首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Killion DD  Grooms S  Frans RE 《Plant physiology》1968,43(12):1996-2000
Mitochondria isolated from 2 strains of cotton plant hypocotyls (Gossypium hirsutum L. var. Rex smooth leaf and Rex glandless) were examined for their oxidative phosphorylation activities. Bovine serum albumin at a relatively high concentration was essential in the extraction medium for the isolation of oxidatively active mitochondria from both strains of cotton. Phosphorylation was obtained only with Rex glandless cotton mitochondria. This activity was low in comparison to the mitochondria isolated from soybeans (Glycine max L. var. Lee). The endogenous gossypol content was found to be much higher in the Rex smooth leaf tissue than in the Rex glandless tissue. In turn, comparable gossypol differences were found associated with their respective mitochondrial fractions. Exogenous gossypol uncoupled succinate oxidation with active mitochondria isolated from soybeans. Gossypol as a possible uncoupler is discussed and compared to carbonyl cyanide, m-chlorophenyl hydrazone and 2,4-dinitrophenol.  相似文献   

3.
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.  相似文献   

4.
5.
The nutrient composition and enzyme activities in larvae of the beet armyworm, Spodoptera exigua (Hübner), fed on high, medium or low gossypol cotton cultivars were examined at different time intervals. Significantly lower free fatty acid was observed in larvae fed for 6 h on high gossypol ‘M9101’ compared to larvae fed on the low (ZMS13) and intermediate (HZ401) gossypol cultivars. Significantly higher trypsin activity was observed in larvae fed on high gossypol ‘M9101’ for 24 h compared to those fed for 1, 4 and 6 h. Significantly higher catalase and total superoxide dismutase enzyme activities were observed in larvae of S. exigua fed on high gossypol ‘M9101’ compared with low gossypol cultivars ‘ZMS13’ and ‘HZ401’ for 1, 4, 6 and 24 h. However, significantly lower carboxylesterase and acetylcholinesterase enzyme activities were found in larvae fed on high gossypol ‘M9101’ compared with the other cultivars for 1, 4, 6 and 24 h. The interaction between cotton variety and beet armyworm infestation time significantly affected the carboxylesterase enzyme activity in S. exigua. The characterization of the effects of plant allelochemicals on herbivorous larvae is important for aiding understanding of plant-insect interaction as well as in devising solutions to pest problems by breeding plant resistance, identifying metabolic targets for insecticide development, etc.  相似文献   

6.
Friend or foe?: a plant's induced response to an omnivore   总被引:1,自引:0,他引:1  
Omnivorous natural enemies of herbivores consume plant-based resources and may elicit induced resistance in their host plant. A greater induction threshold for damage produced by omnivorous predators than for strict herbivores might be expected if omnivore performance is enhanced on noninduced plants, allowing them to reduce future levels of herbivory. Currently, it is not known if a plant responds to feeding by omnivorous predators and by herbivores similarly. To examine this question, we chose herbivore and omnivore species that produce the same kind of quantifiable damage to cotton leaves, enabling us to control statistically for the intensity of plant damage, and ask whether plant responses differed depending on the identity of the damaging species. We first compared changes in plant peroxidase activity, gossypol gland number and density, and leaf area in response to feeding by the spider mite Tetranychus turkestani (Ugarov and Nikolski) (an herbivore) and by one of the mite's principal natural enemies, the western flower thrips Frankliniella occidentalis (Pergande) (an omnivore). Both species increased the activity of peroxidase, but when we controlled for the amount of damage, the peroxidase activity of mite-damaged plants was higher than that of thrips-damaged plants. We also found that thrips, but not spider mites, increased the density of gossypol glands in the second true leaf. In a second experiment we included an additional herbivore, the bean thrips Caliothrips fasciatus (Pergande), to see if the different responses of cotton to thrips and mite herbivory we first observed were attributable to differences in trophic function (herbivore versus omnivore) or to other differences in feeding generated by thrips versus mites. Cotton plants exhibited the same pattern of induced responses (elevated peroxidase, increased number of glands, reduced leaf area) to herbivory generated by the bean thrips (an herbivore) and western flower thrips (an omnivore), suggesting that trophic function was not a key determinant of plant response. Thrips-damaged plants again showed a significantly higher density of gossypol glands than did mite-damaged plants. Overall, our results suggest that (1) an omnivorous predator systemically induces resistance traits in cotton and (2) whereas there is evidence of taxonomic specificity (thrips versus mites), there is little support for trophic specificity (herbivorous thrips versus omnivorous thrips) in the elicitation of induced responses.  相似文献   

7.
Plants can have detrimental effects on biological control agents by affecting their prey or host quality. Thus, it is important to understand the tri-trophic interactions between plants, herbivores and natural enemies when implementing biological control programmes. Studies have shown that both morphological and chemical traits of host plants can affect the third trophic level. Cotton plants are known to produce alkaloids such as gossypol, a sesquiterpene aldehyde that can confer resistance against herbivorous arthropods. Nevertheless, little is known about the effect of gossypol on biological control agents. In this study, we investigated how three cotton cultivars (BRS Rubi, BRS Safira and BRS Verde) differing in gossypol content affect development and growth of predatory coccinellids, Eriopis connexa and Harmonia axyridis, feeding on the cotton aphid Aphis gossypii reared on those cultivars. The results show that the cultivar BRS Rubi (highest gossypol content) had a sub-lethal effect on the development and growth of both Coccinellidae species compared with the other cultivars. Overall, the cultivar BRS Rubi reduced slightly fecundity, net reproductive rate and intrinsic rate of natural increase for both Coccinellidae species. However, because aphid populations stay short periods of time in the field, and adult coccinellids may supplement its diet with alternative prey and plant material this sub-lethal indirect effect of gossypol may not have a detrimental effect on field biological control of cotton aphid by either E. connexa or H. axyridis, thus suggesting a compatibility between plant resistance and biological control agents.  相似文献   

8.
Hairy root cultures were induced by inoculating cotyledonary leaves and hypocotyl segments from two cotton species, Gossypium hirsutum and Gossypium barbadense, with Rhizobium rhizogenes 15834. For both species, more hairy roots formed on inoculation sites on cotyledonary leaves than on hypocotyls. The addition of sucrose to basal Murashige–Skoog media increased the frequency of hairy root formation, whereas the addition of naphthalene acetic acid (0.54 μM) did not. After transfer to a liquid culture, hairy root growth was very rapid. After 3 wk in liquid culture, both cotton species produced gossypol, a di-sesquiterpene secondary metabolite with known anticancer activity, and two related methylated derivatives. Most (60–95%) gossypol produced by cultures was retained within the hairy root tissues, but some was found in the media. The average gossypol level observed among 96 different cultures was 15 mg/g of dry culture mass; however, some cultures produced >40 mg/g of dry culture mass. Variation in gossypol levels was greater for cultures arising from different transformation events than for multiple subclones of a single transformant. The high level of gossypol production attained by most of these cultures suggests that they will be valuable for studying the biochemical and molecular aspects of gossypol biosynthesis, capable of producing large amounts of gossypol and related compounds, and useful for generating modified forms of gossypol (e.g., radio-labeled gossypol) for understanding bioactivity mechanisms. Mention of trade names or commercial products or vendors in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

9.
Amino-terminated dendrimers are well-defined synthetic hyperbranched polymers and have previously been shown to destabilize aggregates of the misfolded, pathogenic, and partially protease-resistant form of the prion protein (PrPSc), transforming it into a partially dissociated, protease-sensitive form with strongly reduced infectivity. The mechanism behind this is not known, but a low pH, creating multiple positively charged primary amines on the dendrimer surface, increases the efficiency of the reaction. In the present study, surface amines of the dendrimers were modified to yield either guanidino surface groups (being positively charged at neutral pH) or urea groups (uncharged). The ability of several generations of modified dendrimers and unmodified amino-terminated dendrimers to deplete PrPSc from persistently PrPSc-infected cells in culture (SMB cells) was studied. It was found that destabilization correlated with both the generation number of the dendrimer, with higher generations being more efficient, and the charge density of the surface groups. Urea-decorated dendrimers having an uncharged surface were less efficient than positively charged unmodified- (amino) and guanidino-modified dendrimers. The most efficient dendrimers (generation 4 (G4) and G5-unmodified and guanidino dendrimers) cleared PrPSc completely by incubation for 4 days at less than 50 nM. In contrast to both unmodified and guanidine-modified dendrimers, the uncharged urea dendrimers showed much lower cytotoxicity toward noninfected SMB cells. Therapeutic uses of modified dendrimers are indicated by the low concentrations of dendrimers needed.  相似文献   

10.
Carbonate dehydratase was detected dissolved in the hemolymph of the tarantula, Eurypelma californicum. The enzyme was purified 31-fold by gel filtration, anion-exchange chromatography, a second gel filtration, and finally, preparative polyacrylamide gel electrophoresis. Zinc content increased during purification to up to 2.4 mol Zn/100 000 g of protein (= 1.58 mg Zn/g protein). In the polyacrylamide electrophoresis of tarantula hemolymph under non-denaturing conditions three major protein bands were observed: hemocyanin, a 16 S lipoprotein and the active band which migrated closely behind the 16 S lipoprotein. After treatment with sodium dodecyl sulfate both the carbonate dehydratase-active protein and the lipoprotein revealed bands corresponding to Mr = 95 000 and 110 000, respectively, but the enzymatically active protein revealed an additional third band with Mr = 40 000. The latter band is though to represent the 'true' carbonate dehydratase protein. Upon isoelectric focusing of material containing carbonate dehydratase activity and lipoprotein, bands were obtained at pH 5.45, 5.6 and 5.7. The band at pH 5.6 contained the peak of enzyme activity, and upon dodecyl sulfate-polyacrylamide gel electrophoresis showed the highest proportion of the 40-kDa polypeptide. It is concluded that tarantula carbonate dehydratase, instead of forming a high molecular mass aggregate, is associated with the 16 S lipoprotein, the latter serving as a carrier for the enzyme. The lipoprotein is probably also involved in other transport processes. It is present in great excess and may therefore occur in two forms, charged with carbonate dehydratase or uncharged. Tarantula carbonate dehydratase is inhibited by acetazolamide and by dansylamide, but not by a number of other known inhibitors, most notably not by 4-(aminomethyl)benzenesulfonamide. Treatment with 1M urea does not affect specific enzyme activity, while 2M urea inhibits by 50%. 2-Mercaptoethanol inhibits activity by 50% at 0.1M. Like other carbonate dehydratases, the tarantula enzyme shows esterase activity. The Km for 4-nitrophenyl acetate is 5mM.  相似文献   

11.

Background  

Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms.  相似文献   

12.
The terpenoid gossypol, a secondary metabolite found in the cotton plant, is synthesized by a free radical dimerization of hemigossypol. Gossypol exists as an atropisomeric mixture because of restricted rotation around the central binaphthyl bond. The dimerization of hemigossypol is regiospecific in cotton. In the case of some moco cotton, the dimerization also exhibits a high level of stereoselectivity. The mechanism that controls this stereoselective dimerization is poorly understood. In this paper, we demonstrate that a dirigent protein controls this stereoselective dimerization process. A partially purified protein preparation from cotton flower petals, which by itself is unable to convert hemigossypol to gossypol, converts hemigossypol with a 30% atropisomeric excess into (+)-gossypol when combined with an exogenous laccase, which by itself produces racemic gossypol.  相似文献   

13.
Urea is a protein unfolding agent that can accumulate to locally high concentrations in tissues of many organisms. We used Drosophila melanogaster to test the hypothesis that urea loading would promote formation of isoaspartate (beta-carboxyl-linked aspartate), a common form of protein damage that occurs most readily in unstructured polypeptides and flexible regions of folded proteins. Ten populations of flies were tested; five control populations of urea-sensitive flies and five previously selected urea-tolerant populations. We measured the effects of urea consumption on levels of both isoaspartate and protein L-isoaspartate methyltransferase (PIMT), an enzyme believed to function in the repair or removal of isoaspartyl proteins. For both sets of populations, urea feeding for 6 days increased isoaspartyl levels by approximately 60%, supporting the idea that disruption of protein secondary and tertiary structures can accelerate the formation of isoaspartate in vivo. Urea feeding tended to increase PIMT activity in both control and urea-tolerant populations. There were no significant differences in PIMT activities or isoaspartyl levels between the control and urea-tolerant flies raised on normal or urea food. The latter findings indicate that urea tolerance evolved in the selected populations without any significant change in PIMT expression or activity.  相似文献   

14.
Lewy bodies are cytoskeletal inclusions associated with neuronal injury and death in idiopathic Parkinson's disease and other neurodegenerative disorders. The chemical composition of the 8-10-nm fibrils of the Lewy body is unknown, although they are related to both normal cytoskeletal elements and paired helical filaments of Alzheimer neurofibrillary tangles. From the Lewy body-rich cerebral cortex of patients with diffuse Lewy body disease we have isolated intact Lewy bodies using a high salt buffer/nonionic detergent gradient centrifugation procedure and extracted the constitutive fibrils with urea and sodium dodecyl sulfate. Urea/detergent-resistant Lewy body fibrils were solubilized with formic acid and found to contain a single protein band of 68 kDa, which was not found in identically prepared normal brain homogenates. The Lewy body derived-polypeptide was recognized on immunoblots by a polyclonal antibody that reacted with both the 68-kDa neurofilament subunit and the microtubule-associated protein tau. The 68-kDa Lewy body protein was not labeled by the monoclonal antibody tau-1 despite prior in vitro enzymatic dephosphorylation. We conclude that the detergent-insoluble component of the cortical Lewy body fibril shares epitopes with neurofilament and tau and may be a posttranslationally modified derivative of either neurofilament or tau with substantially altered biochemical and immunologic properties.  相似文献   

15.
The vasopressin-regulated urea transporter (UT)-A1 is a transmembrane protein with two glycosylated forms of 97 and 117 kDa; both are derived from a single 88-kDa core protein. However, the precise molecular sites and the function for UT-A1 N-glycosylation are not known. In this study, we compared Madin-Darby canine kidney cells stably expressing wild-type (WT) UT-A1 to Madin-Darby canine kidney cell lines stably expressing mutant UT-A1 lacking one (A1m1, A1m2) or both glycosylation sites (m1m2). Site-directed mutagenesis revealed that UT-A1 has two glycosylation sites at Asn-279 and -742. Urea flux is stimulated by 10 nM vasopressin (AVP) or 10 microM forskolin (FSK) in WT cells. In contrast, m1m2 cells have a delayed and significantly reduced maximal urea flux. A 15-min treatment with AVP and FSK significantly increased UT-A1 cell surface expression in WT but not in m1m2 cells, as measured by biotinylation. We confirmed this finding using immunostaining. Membrane fractionation of the plasma membrane, Golgi, and endoplasmic reticulum revealed that AVP or FSK treatment increases UT-A1 abundance in both Golgi and plasma membrane compartments in WT but not in m1m2 cells. Pulse-chase experiments showed that UT-A1 half-life is reduced in m1m2 cells compared with WT cells. Our results suggest that mutation of the N-linked glycosylation sites reduces urea flux by reducing UT-A1 half-life and decreasing its accumulation in the apical plasma membrane. In vivo, inner medullary collecting duct cells may regulate urea uptake by altering UT-A1 glycosylation in response to AVP stimulation.  相似文献   

16.
17.
Ling Li  Xuyu Yan  Lei Mei  Shuijin Zhu 《Phyton》2020,89(2):315-327
The risk of cotton production on arable land contaminated with heavy metals has increased in recent years. Cotton shows stronger and more extensive resistance to heavy metals, such as cadmium (Cd) than that of other major crops. Here, a potted plant experiment was performed to study Cd-induced alterations in the cottonseed kernel gossypol content and pigment gland structure at maturity in two transgenic cotton cultivars (ZD-90 and SGK3) and an upland cotton standard genotype (TM-1). The results showed that Cd accumulation in cottonseed kernels increased with increasing Cd levels in the soil. The seed kernel Cd content in plants grown on Cd-treated soils was 10-20 times greater than the amount in the corresponding controls. There was a significant difference in Cd accumulation in cottonseed kernels at the 400 and 600 μM Cd levels. Cd accumulation was higher in SGK3 and ZD-90 than in TM-1. However, the gossypol content in cottonseed kernels was lower in SGK3 and ZD-90 than in TM-1. There was a negative correlation (r = 0.550) between Cd accumulation and the gossypol content in cottonseed kernels. The density of cottonseed kernel pigment glands decreased under Cd stress. This is consistent with the change in gossypol content, which decreased under Cd stress. The damage of the cultivars ZD-90 and SGK3 from Cd poisoning was relatively low under Cd stress, while TM-1 was seriously affected and exhibited Cd sensitivity. Further studies are necessary to understand the cause of the reduced gossypol content in cotton seeds under Cd stress.  相似文献   

18.
Urea is a protein unfolding agent that can accumulate to locally high concentrations in tissues of many organisms. We used Drosophila melanogaster to test the hypothesis that urea loading would promote formation of isoaspartate (β-carboxyl-linked aspartate), a common form of protein damage that occurs most readily in unstructured polypeptides and flexible regions of folded proteins. Ten populations of flies were tested; five control populations of urea-sensitive flies and five previously selected urea-tolerant populations. We measured the effects of urea consumption on levels of both isoaspartate and protein l-isoaspartate methyltransferase (PIMT), an enzyme believed to function in the repair or removal of isoaspartyl proteins. For both sets of populations, urea feeding for 6 days increased isoaspartyl levels by approximately 60%, supporting the idea that disruption of protein secondary and tertiary structures can accelerate the formation of isoaspartate in vivo. Urea feeding tended to increase PIMT activity in both control and urea-tolerant populations. There were no significant differences in PIMT activities or isoaspartyl levels between the control and urea-tolerant flies raised on normal or urea food. The latter findings indicate that urea tolerance evolved in the selected populations without any significant change in PIMT expression or activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号