首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphorothioate cytosine-guanine oligodeoxynucleotides (CpG PS-ODNs) has been reported to induce Th1 immune responses against coadministered Ags more efficiently than phosphodiester CpG ODNs (CpG PO-ODNs). Here, we demonstrated that PS-ODNs, but not PO-ODNs, have a chemotactic effect on primary macrophages, which is independent of the CpG motif. In addition, the conjugation of a hexameric dG run (dG(6) run) at the 3' terminus reduced the concentration required for the optimal chemotactic activity of PS-ODNs by approximately 10-fold. Endosomal maturation blockers, such as monensin and chloroquine, inhibited the chemotactic effect of PS-ODNs. The inhibition of the activities of p38 mitogen-activated protein (MAP) kinase, and extracellular signal-related kinases (ERKs) as well as phosphoinositide 3-kinase with their specific inhibitors also resulted in suppressing the chemotaxis of primary macrophages induced by PS-ODNs. These results indicate that the PS-ODN-mediated chemotaxis requires the activation of ERKs, p38 MAP kinase, and phosphoinositide 3-kinase as well as endosomal maturation. In addition, the phosphorylations of the p38 MAP kinase, ERKs, and protein kinase B, Akt, were induced by PS-ODN, which were further enhanced by the presence of both a dG(6) run and CpG motifs. Our findings suggest that the chemotactic activity of PS-ODNs may be one of the mechanisms by which PS-ODNs exhibit stronger immunomodulatory activities than PO-ODNs in vivo.  相似文献   

2.
Multidrug resistance-associated protein (MRP1) is a transmembrane pump protein responsible for the efflux of chemotherapeutic drugs, an important cause of anticancer treatment failure. Trying to circumvent MRP-mediated resistance we designed and synthesized hairpin loops forming antisense oligodeoxyribonucleotides (ODNs), both phosphodiesters (PO-ODNs) and their phosphorothioate analogues (PS-ODNs), to reduce the protein expression by targeting its mRNA in a sequence specific manner. Melting temperature measurements as well as polyacrylamide gel electrophoresis supported the preferential formation of a secondary structure, which was expected to protect ODNs against 3'-exonuclease degradation. ODNs and PS-ODNs designed in this work were successfully tested as antisense inhibitors of the expression of MRP1 in the leukaemia HL60/ADR cell line. Foreseeing the necessity to perform clinical studies with such ODNs we investigated their stability against the 3'-exonuclease activity of fetal calf serum and human plasma. Under the conditions, corresponding to physiological ones, we observed high stability of hairpin loop forming ODNs, especially those containing longer (e.g. 7 base pair) stems. Comparative studies on the stability of chemically unmodified hairpin loop forming ODNs and their PS-counterparts indicated that endonuclease activity did not play any important role in the process of their nucleolytic degradation. Our studies provide strong evidence for high stability of chemically unmodified hairpin loop ODNs, making them an attractive alternative to phosphorothioate analogues commonly used in antisense strategy.  相似文献   

3.
4.
Several strategies to improve the separation of 11 central nervous system drugs (antipsychotics and antidepressants) with capillary zone electrophoresis were applied: the variation of the pH of the buffering background electrolyte, its ionic strength, addition of inclusion-complex forming β-cyclodextrin or polyvinylpyrrolidone (PVP), respectively, as a replaceable, soluble, polymeric pseudo-stationary phase. Best separation was achieved at pH 2.5 and 35 mmol/l ionic strength (phosphate buffer), with 0.5% (w/v) PVP.  相似文献   

5.
An alternative sieving matrix, replaceable cross-linked polyacrylamide (rCPA), was developed for sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) separation of proteins. This rCPA could be conveniently pressurized into separation capillaries under a pressure of 80 psi. SDS-CGE separations using this matrix generated high resolutions for a wide range (approximately 4 kD to approximately 300 kD) of proteins. When compared to the most frequently used sieving matrixes, the rCPA permitted the highest resolutions with comparable or increased separation speed for protein separations.  相似文献   

6.
BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). It is an enveloped, single-stranded, plus-sense RNA virus with a genome of approximately 30 kb. The structural proteins E, M and N of SARS-CoV play important roles during host cell entry and viral morphogenesis and release. Therefore, we have studied whether expression of these structural proteins can be down-regulated using an antisense technique. METHODS: Vero E6 cells were transfected with plasmid constructs containing exons of the SARS-CoV structural protein E, M or N genes or their exons in frame with the reporter protein EGFP. The transfected cell cultures were treated with antisense phosphorothioated oligonucleotides (antisense PS-ODN, 20mer) or a control oligonucleotide by addition to the culture medium. RESULTS: Among a total of 26 antisense PS-ODNs targeting E, M and N genes, we obtained six antisense PS-ODNs which could sequence-specifically reduce target genes expression by over 90% at the concentration of 50 microM in the cell culture medium tested by RT-PCR. The antisense effect was further proved by down-regulating the expression of the fusion proteins containing the structural proteins E, M or N in frame with the reporter protein EGFP. In Vero E6 cells, the antisense effect was dependent on the concentrations of the antisense PS-ODNs in a range of 0-10 microM or 0-30 microM. CONCLUSIONS: The antisense PS-ODNs are effective in downregulation of SARS. The findings indicate that antisense knockdown of SARS could be a useful strategy for treatment of SARS, and could also be suitable for studies of the pathological function of SARS genes in a cellular model system.  相似文献   

7.
Li Y  Chen Z  Li X  Zhang H  Huang Q  Zhang Y  Xu S 《Journal of biotechnology》2007,128(4):726-734
The need for novel antimicrobial agents to combat the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis is a worldwide urgency. This study has investigated the effects on phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of inositol-1-phosphate synthase, the key enzyme in the first step in inositol synthesis. Inositol is utilized by M. tuberculosis in the production of its major thiol, which is an antioxidant that helps M. tuberculosis to get rid of reactive oxygen species and electrophilic toxins. Real-time RT-PCR analysis revealed that mRNA expression of inositol-1-phosphate (I-1-P) synthase was significantly reduced upon addition of 20 microM PS-ODNs. Treatment with antisense PS-ODNs also reduced the level of mycothiol and the proliferation of M. tuberculosis and enhanced susceptibility to antibiotics. The experiments indicated that the antisense PS-ODNs could enter the cytoplasm of M. tuberculosis and inhibit the expression of I-1-P synthase. This study demonstrates that the M. tuberculosis I-1-P synthase is a target for the development of novel antibiotics and PS-ODN to I-1-P synthase is a promising antimycobaterial candidate.  相似文献   

8.
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP.  相似文献   

9.
Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the increase by 0.5 degrees C for DPPC observed in the presence of 20% (w/w) PEG. At a given PEG concentration maximal increase in IE/IM (correlating to the extent of segregation of PPDPC in the different lipid matrices) decreased in the sequence 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) > DPPC > DMPC > SOPC > POPC, whereas no evidence for phase separation in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) LUV was observed (Lehtonen and Kinnunen, 1994, Biophys. J. 66: 1981-1990). Our results indicate that PEG-induced dehydration of liposomal membranes provides the driving force for the segregation of the pyrene lipid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A new separation method of human erythrocyte membrane proteins by sodium dodecyl sulfate capillary gel electrophoresis (SDS–CGE) is described. In this method, a replaceable gel matrix was used. Seven major erythrocyte membrane proteins, α-and β-spectrin, ankyrin 2.1, band 3 (anion-exchanger), 4.1a and b, and 4.2 (pallidin), were separated and identified by SDS–CGE method. High reproducible migration times of these proteins (inter-assay coefficients of variation less than 2%), as well as quantification (inter-assay coefficients of variation less than 11%) were obtained. This new SDS–CGE method may provide important diagnostic evidence for hereditary spherocytosis. It can be a powerful diagnostic tool in place of SDS polyacrylamide gel electrophoresis for erythrocyte membrane protein analysis.  相似文献   

11.
A water-soluble polymer such as polyethylene glycol (PEG), Dextran T-500 (Dx), or diethylaminoethyl-Dextran (DEAE-Dx) induced aqueous micellar solutions of octyl-beta-D-thioglucoside (OTG) to phase separation at 0 degrees C. One of the two phases thus formed is a surfactant-depleted aqueous solution (aqueous phase) of a water-soluble polymer and the other a concentrated OTG solution (surfactant-rich phase). In a combination of OTG with PEG or Dx, cytochrome P450 (P450) and cytochrome b(5) (b(5)) were well extracted into the surfactant-rich phase. The extraction yield of P450 was slightly greater than that of b(5). In contrast to PEG and Dx, DEAE-Dx markedly reduced the extraction of b(5), while that of P450 remained almost unchanged. DEAE-Dx served the dual functions of inducing the phase separation and preventing the extraction of b(5) into the surfactant-rich phase. This depressed extraction of b(5) was reversed by the addition of potassium phosphate. DEAE-Dx and potassium phosphate proved effective in controlling the extractability of b(5). The polymer-induced phase separation provides a new basis for highly efficient extraction of membrane proteins under mild conditions that should be acceptable for thermolabile membrane proteins under physiological conditions. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 311-318, 1997.  相似文献   

12.
Extraction in two steps of glucoamylase was studied in poly(ethylene glycol) (PEG) and potassium phosphate systems at pH values of 6, 7 and 9. Ten different conditions using PEG 300, 600, 1500, 4000 and 6000 were studied. The bottom phase of the first extraction step, with the enzyme, was reused in an appropriate concentration of PEG to form the second extraction step. The optimal partitioning conditions for glucoamylase separation were obtained in PEG 4000 (first step), PEG 1500 (second step) at pH 7 and resulted in a three-fold increase in glucoamylase purification.  相似文献   

13.
Functionalized Fe(3)O(4) nanoparticles conjugated with polyethylene glycol (PEG) and carboxymethyl chitosan (CM-CTS) were developed and used as a novel magnetic absorbing carrier for the separation and purification of lysozyme from the aqueous solution and chicken egg white, respectively. The morphology of magnetic CM-CTS nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of superparamagnetic carboxymethyl chitosan nanoparticles (Fe(3)O(4) (PEG+CM-CTS)) was about 15 nm, and could easily aggregate by a magnet when suspending in the aqueous solution. The adsorption capacity of lysozyme onto the superparamagnetic Fe(3)O(4) (PEG+CM-CTS) nanoparticles was determined by changing the medium pH, temperature, ionic strength and the concentration of lysozyme. The maximum adsorption loading reached 256.4 mg/g. Due to the small diameter, the adsorption equilibrium of lysozyme onto the nanoparticles reached very quickly within 20 min. The adsorption equilibrium of lysozyme onto the superparamagnetic nanoparticles fitted well with the Langmuir model. The nanoparticles were stable when subjected to six repeated adsorption-elution cycles. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The lysozyme was purified from chicken egg white in a single step had higher purity, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Considering that the superparamagnetic nanoparticles possess the advantages of high efficiency, cost-effectiveness and excellent binding of a larger amount of lysozyme and easier separation from the reaction system, thus this type of superparamagnetic nanoparticles would bring advantages to the conventional separation techniques of lysozyme from chicken egg white.  相似文献   

14.
Human telomerase is a ribonucleoprotein which uses its internal RNA moiety as a template for telomeric DNA synthesis. This enzyme is up-regulated in most malignant tumors and is therefore considered as a possible cancer target. Here we examined the effects of differently modified oligomers on telomeraseactivity from HL-60 cell extracts (TRAP-ezetrade mark assay). Phosphorothioate-modified oligonucleotides (PS-ODNs) inhibited telomerase activity at subnanomolar concen-trations and proved to be more efficient than peptide nucleic acids. In contrast to all the investigated oligomers, PS-ODNs were found to bind to the protein motif of telomerase called the primer binding site but poorly to its RNA. This is suggested by kinetic investigations demonstrating a competitive interaction of PS-ODNs and TS primer at the primer binding site. The K m value of the TS primer was 10.8 nM, the K i value of a 20mer PS-ODN was 1.6 nM. When the TS primer was PS-modified a striking increase in the telomerase activity was found which correlates with the number of phosphodiesters replaced. The K m value of a completely PS-modified TS primer was 0.56 nM. Based on these results the design of chimeric ODNs is proposed consisting of a 5'-PS-modified part targeting the primer binding site and a 3'-terminus part targeting the telomerase RNA.  相似文献   

15.
Two reversibly soluble-insoluble polymers (viz. Eudragit S-100 and alginate) were used as free macroaffinity bioligands in polyethylene glycol (PEG)/salt two-phase systems for separation of enzymes. Incorporation of Eudragit S-100 and alginate in the PEG phase led to considerable selectivity in separation of microbial xylanases and pullulanase, respectively. Xylanase from Aspergillus niger was recovered 93% with 56-fold purification, whereas the enzyme from Trichoderma reesei and Bacillus amyloliquefaciens was obtained with 93% activity recovery (31-fold purification) and 90% activity recovery (32-fold purification), respectively. From Bacillus acidopullulyticus pullulanase, 85% enzyme activity recovery with 44-fold purification was obtained. The approach described here shows the potential of developing into a general approach for use of reversibly soluble-insoluble macroaffinity ligand in two-phase affinity extraction.  相似文献   

16.
Capillary electrophoresis using a replaceable gel buffer was applied to the separation of DNA fragments. A short effective length capillary (1–2 cm) at low electric field allowed the separation of a 20–1000 bp ladder in 1 min. Although similar separation speed was achieved with a longer capillary at high field, the resolution of larger fragments was degraded. The short effective length capillaries were able to separate the wildtype and mutant PCR products of the TGF-β1 gene in under 45 s.  相似文献   

17.
Aqueous two-phase extraction for protein recovery from corn extracts   总被引:1,自引:0,他引:1  
Corn has been used as an expression host for several recombinant proteins with potential for large-scale production. Cost-effective downstream initial recovery, separation and concentration remain a challenge. Aqueous two-phase (ATP) partitioning has been used to recover and concentrate proteins from fermentation broths and offers advantages for integration of those steps with biomass removal. To examine the applicability of ATP partitioning to recombinant protein purification from corn endosperm and germ, ATP system parameters including poly(ethylene glycol) (PEG) molecular weight (MW), phase-forming salt, tie line length (TLL), and pH were manipulated to control partitioning of extracted native proteins from each fraction. Moderate PEG MW, reduction of phase ratio, and added NaCl effected complete recovery of the hydrophobic model protein lysozyme in the top phase with ca. 5x enrichment and illustrates a favorable match of recombinant protein characteristics, expression host, and separation method. Furthermore, integration of protein extraction with the partitioning reduced the load of contaminating host proteins relative to the more traditional separate steps of extraction followed by partitioning. Performance of the integrated partitioning was hindered by endosperm solids loading, whereas for germ, which has ca. 35x higher aqueous soluble protein, the limit was protein solubility. For more hydrophilic model proteins (the model being cytochrome c), effective separation required further reduction of PEG MW to effect more partitioning of host proteins to the top phase and enrichment of the model protein in the lower phase. The combination of PEG MW of 1450 with 8.5 wt.% NaCl addition (Na(2)SO(4) as the phase-forming salt) provided for complete recovery of cytochrome c in the lower phase with enrichment of 9x (germ) and 5x (endosperm). As a result of lower-phase recovery, the advantage of simultaneous removal of solids is lost. The lower solubility of native endosperm proteins results in higher purity for the same enrichment.  相似文献   

18.
The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (Nmin) from the resolution length analysis.  相似文献   

19.
In the presence of sodium chloride (NaCl), DNA fragments can be size‐selectively separated by varying the final concentration of polyethylene glycol (PEG). This separation strategy in combination with the use of paramagnetic particles provides a valuable platform for achieving the desired DNA size interval, which is important in automated library preparation for high‐throughput DNA sequencing. Here, we report the establishment of recovery spectra of DNA fragments that enable the determination of suitable NaCl and PEG concentrations for size‐selective separation. Firstly, at a given NaCl concentration, the recovery equation was obtained by fitting the DNA recovery ratios versus the PEG concentrations using the logistic function to determine the required parameters. Secondly, the slope function of the recovery equation was achieved by deducing its first derivative. Therefore, the recovery spectrum can be generated using the slope function based on those parameters. According to the recovery spectra of different length DNA fragments, suitable NaCl and PEG concentrations can be determined, respectively, by calculating their resolution values and recovery ratios. The strategy was effectively applied to the size‐selective separation of 532‐, 400‐, and 307‐bp fragments at the selected reagent concentrations with recoveries of 96.9, 64.7, and 85.9%, respectively. Our method enables good predictions of NaCl and PEG concentrations for size‐selective DNA separation.  相似文献   

20.
A simple method for separation of large quantities of isolated metaphase chromosomes in Single-Tube Partition (STP), using hydrophobic ligand in an aqueous two-phase system is presented. The two-phase system is composed of an aqueous solution of Dextran 500 and poly(ethylene) glycol 6000 (PEG). The concentration of chromosomes to be separated has no influence on the distribution behaviour in the partition system and up to 10(7) chromosomes can be used in a phase system as small as 3-5 g (5 ml tube). Different groups of chromosomes differ in their distribution in the two phases and the introduction of PEG with covalently attached hydrophobic ligand provides a means of controlling the distribution of chromosomes. A combination of positively charged trimethylaminomethane PEG (TMA-PEG) together with palmitat PEG (P-PEG) gives a fairly good condition for separating chromosomes on the basis of their net surface charge differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号