首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adi3 is a protein kinase from tomato that functions as a cell death suppressor and its substrates are not well defined. As a step toward identifying Adi3 substrates we developed an ATP analog-sensitive version of Adi3 in which the ATP-binding pocket is mutated to allow use of bulky ATP analogs. Met385 was identified as the “gatekeeper” residue and the M385G mutation allows for the use of two bulky ATP analogs. Adi3M385G can also specifically utilize N6-benzyl-ATP to phosphorylate a known substrate and provides a tool for identifying Adi3 substrates.  相似文献   

2.
Intracellular signaling by protein kinases controls many aspects of cellular biochemistry and physiology. Determining the direct substrates of protein kinases is important in understanding how these signaling enzymes exert their effect on cellular functions. One of the recent developments in this area takes advantage of the similarity in the ATP binding domains of protein kinases, where a few conserved amino acids containing large side chains come in close contact with the N-6 position of bound ATP. Mutation of one or more of these residues generates a "pocket" in the ATP binding site that allows the mutant kinase, but not other cellular kinases, to utilize analogs of ATP with bulky substituents synthesized onto the N-6 position. The use of such a mutated kinase and radiolabeled ATP analogs allows for the specific labeling of direct substrates of the kinase within a mixture of cellular proteins. We have recently reported the generation of "pocket" mutants of extracellular regulated kinase 2 (ERK2) and their use in the identification of two novel substrates of ERK2. In this report, we discuss the generation and characterization of ERK2 mutants that utilize analogs of ATP and describe the methodology used to identify ERK2-associated substrates. We also describe the direct labeling of ERK2 substrates in cell lysates. These methodologies can be adapted for use with other protein kinases to increase the understanding of intracellular signal transduction.  相似文献   

3.
Due to the numerous kinases in the cell, many with overlapping substrates, it is difficult to find novel substrates for a specific kinase. To identify novel substrates of cAMP-dependent protein kinase (PKA), the PKA catalytic subunit was engineered to accept bulky N(6)-substituted ATP analogs, using a chemical genetics approach initially pioneered with v-Src (1). Methionine 120 was mutated to glycine in the ATP-binding pocket of the catalytic subunit. To express the stable mutant C-subunit in Escherichia coli required co-expression with PDK1. This mutant protein was active and fully phosphorylated on Thr(197) and Ser(338). Based on its kinetic properties, the engineered C-subunit preferred N(6)(benzyl)-ATP and N(6)(phenethyl)-ATP over other ATP analogs, but still retained a 30 microm K(m) for ATP. This mutant recombinant C-subunit was used to identify three novel PKA substrates. One protein, a novel mitochondrial ChChd protein, ChChd3, was identified, suggesting that PKA may regulate mitochondria proteins.  相似文献   

4.
Zipper-interacting protein kinase (ZIPK) has been implicated in Ca(2+)-independent smooth muscle contraction, although its specific role is unknown. The addition of ZIPK to demembranated rat caudal arterial strips induced an increase in force, which correlated with increases in LC(20) and MYPT1 phosphorylation. However, because of the number of kinases capable of phosphorylating LC(20) and MYPT1, it has proven difficult to identify the mechanism underlying ZIPK action. Therefore, we set out to identify bona fide ZIPK substrates using a chemical genetics method that takes advantage of ATP analogs with bulky substituents at the N(6) position and an engineered ZIPK capable of utilizing such substrates. (32)P-Labeled 6-phenyl-ATP and ZIPK-L93G mutant protein were added to permeabilized rat caudal arterial strips, and substrate proteins were detected by autoradiography following SDS-PAGE. Mass spectrometry identified LC(20) as a direct target of ZIPK in situ for the first time. Tissues were also exposed to 6-phenyl-ATP and ZIPK-L93G in the absence of endogenous ATP, and putative ZIPK substrates were identified by Western blotting. LC(20) was thereby confirmed as a direct target of ZIPK; however, no phosphorylation of MYPT1 was detected. We conclude that ZIPK is involved in the regulation of smooth muscle contraction through direct phosphorylation of LC(20).  相似文献   

5.
The parameters of the hydrolysis of ATP and several analogs by soluble mitochondrial ATPase were determined. Vmax of the reaction decreases within the range: 2'-desoxy-ATP greater than ATP greater than etheno-ATP greater than GTP greater than 3'-O-methylATP greater than UTP. ATP, 2'-desoxypATP, 3'O-methyl-ATP, GTP, and etheno-ATP are hydrolysed by soluble mitochondrial ATPase with close Km(app) values. CTP is not hydrolysed by the enzyme and does not inhibit the ATPase reaction at a concentration of 10(-2) M. Nucleoside triphosphate derivatives with an "open" ribose cycle 9-[1',5'-dihydroxy-4-(S)-hydroxymethyl-3'-oxapent-2' (R)-yl]adenyl-5'-triphosphate, and 1-[1',5'-dihydroxy-4'-(S)-hydroxymethyl-3'-oxapent-2'(R)-yl[cytosine-5'-triphosphate are effective inhibitors of ATPase (Ki approximately 5.10(-5)M). Mitochondrial ATPase binds the ATP analogs that have hydrocarbon radicals-(CH2)2-, -(CH2)3-, and (CH2)4- instead of the ribose residues: 9-(2'hydroxyethyl)adenyl-2'-triphosphate, 9-(3'-hydroxypropyl)-adenine-3'-triphosphate, and 9-(4'-hydroxybutyl)adenine-4'-triphosphyl)adenine-4'-triphosphate were not hydrolysed by the enzyme, although they inbibit the ATPase reaction (Ki 2.10(-4)M). 9-(2'-hydroxyethyl)adenine-2'-triphosphate is hydrolysed by ATPase eight times more slowly than ATP. It is suggested that the hydrolysis of the substrates of mitochondrial ATPase is- preceded by the binding of the substrates in a tense conformation in the active site of the enzyme.  相似文献   

6.
The problem of identifying downstream targets of kinase phosphorylation remains a challenge despite technological advances in genomics and proteomics. A recent approach involves the generation of kinase mutants that can uniquely use "orthogonal" ATP analogs to phosphorylate substrates in vivo. Using structure-based design, mutants of several protein kinase superfamily members have been found; robust and general methods are needed, however, for altering the nucleotide specificity of the remaining kinases in the genome. Here we demonstrate the application of a new phage display technique for direct functional selection to the identification of a tyrosine kinase mutant with the ability to use N6-benzyl-ATP. Our method produces, in five rounds of selection, a mutant identical to the best orthogonal Src kinase found to date. In addition, we isolate from a larger library of kinase mutants a promiscuous clone capable of using many different ATP analogs. This approach to engineering orthogonal kinases, combined with others, will facilitate the mapping of phosphorylation targets of any kinase in the genome.  相似文献   

7.
Distinguishing the cellular functions carried out by enzymes of highly similar structure would be simplified by the availability of isozyme-selective inhibitors. To determine roles played by individual members of the large myosin superfamily, we designed a mutation in myosin's nucleotide-binding pocket that permits binding of adenine nucleotides modified with bulky N(6) substituents. Introduction of this mutation, Y61G in rat myosin-Ibeta, did not alter the enzyme's affinity for ATP or actin and actually increased its ATPase activity and actin-translocation rate. We also synthesized several N(6)-modified ADP analogs that should bind to and inhibit mutant, but not wild-type, myosin molecules. Several of these N(6)-modified ADP analogs were more than 40-fold more potent at inhibiting ATP hydrolysis by Y61G than wild-type myosin-Ibeta; in doing so, these analogs locked Y61G myosin-Ibeta tightly to actin. N(6)-(2-methylbutyl) ADP abolished actin filament motility mediated by Y61G, but not wild-type, myosin-Ibeta. Furthermore, a small fraction of inhibited Y61G molecules was sufficient to block filament motility mediated by mixtures of wild-type and Y61G myosin-Ibeta. Introduction of Y61G myosin-Ibeta molecules into a cell should permit selective inhibition by N(6)-modified ADP analogs of cellular processes dependent on myosin-Ibeta.  相似文献   

8.
To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N(6)-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATPγS analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B.  相似文献   

9.
In contrast to previously studied ATP analogs, the two-substituted ATP analogs, 2-N3 ATP and 2-Cl ATP were good substrates for dynein ATPase. The Vmax for hydrolysis of both analogs was significantly higher than for ATP and the Km for both analogs was comparable to ATP. The higher hydrolytic rate for the analogs might be explained by a faster dissociation rate of the diphosphate product. This interpretation is supported by measurements of the dissociation rate of the inhibitor, vanadate. The estimate dissociation rate of vanadate with the analogs as substrate is approx. 2-fold higher than with ATP as substrate. These data together with previous studies on a variety of ATP analogs suggest that the 6-amino group on adenine is important for recognition by dynein and that the anti-conformation of the adenine, favored by 2-substituents, is the favored conformation of the nucleotide.  相似文献   

10.
We explored the specificity and nature of the nucleotide-binding pocket of the CCA-adding enzyme (tRNA nucleotidyltransferase) by using CTP and ATP analogs as substrates for a panel of class I and class II enzymes. Overall, class I and class II enzymes displayed remarkably similar substrate requirements, implying that the mechanism of CCA addition is conserved between enzyme classes despite the absence of obvious sequence homology outside the active site signature sequence. CTP substrates are more tolerant of base modifications than ATP substrates, but sugar modifications prevent incorporation of both CTP and ATP analogs by class I and class II enzymes. Use of CTP analogs (zebularine, pseudoisocytidine, 6-azacytidine, but not 6-azauridine) suggests that base modifications generally do not interfere with recognition or incorporation of CTP analogs by either class I or class II enzymes, and that UTP is excluded because N-3 is a positive determinant and/or O-4 is an antideterminant. Use of ATP analogs (N6-methyladenosine, diaminopurine, purine, 2-aminopurine, and 7-deaza-adenosine, but not guanosine, deoxyadenosine, 2'-O-methyladenosine, 2'-deoxy-2'-fluoroadenosine, or inosine) suggests that base modifications generally do not interfere with recognition or incorporation of ATP analogs by either class I or class II enzymes, and that GTP is excluded because N-1 is a positive determinant and/or the 2-amino and 6-keto groups are antideterminants. We also found that the 3'-terminal sequence of the growing tRNA substrate can affect the efficiency or specificity of subsequent nucleotide addition. Our data set should allow rigorous evaluation of structural hypotheses for nucleotide selection based on existing and future crystal structures.  相似文献   

11.
A single mutation in the nucleotide binding pocket of select protein kinases allows for use of a bulky, substituted-ATP analog not used by the wild-type kinase [1]. Using this approach with the protein tyrosine kinase c-Src, we have generated a mutant T338G and expressed it in Src/Yes/Fyn null fibroblasts (SYF1) at near endogenous levels. T338G Src exhibits high specificity for a substituted ATP analog N(6)-2-phenyl ethyl ATP (peATP), which is not used by wild-type c-Src in autophosphorylation nor substrate phosphorylation assays. By employing the T338G Src mutant and [gamma-(32)P]peATP analog, we demonstrate that c-Src can directly phosphorylate focal adhesion kinase (Fak) in vitro. We also show that incubation of permeabilized, T338 Src-expressing cells with peATP causes an increase in Fak tyrosine phosphorylation not observed in wild-type Src cells. Taken together, these data provide evidence that Src directly phosphorylates Fak and demonstrates the limitations of using this modified ATP strategy for analysis of direct substrates of protein kinases in permeabilized cells.  相似文献   

12.
Six analogs of tryptophanyl-adenylate, which is an important intermediate in the enzymatic synthesis of Trp-tRNATrp, have been prepared. Four compounds, tryptophanyl-8-bromoadenylate, tryptophanyl-2-chloroadenylate, tryptophanyl-7-deazaadenylate and tryptophanyl-(N6-methyl)adenylate, contain modifications in the nucleobase moiety, while tryptophanyl-2′ deoxyadenylate and tryptophanyl-3′-deoxyadenylate were modified in the carbohydrate part of the molecule. Three of these analogs (2-chloro, 7-deaza, 2′-deoxy analogs) as well as ATP analogs with the same modifications were substrates in the aminoacylation reaction; three analogs (8-bromo, N6-methyl, 3′-deoxy analogs) were inactive as well as the corresponding ATP analogs. In contrast, in the ATPPPi pyrophosphate exchange in the absence of tRNA all ATP analogs except 8-bromo-ATP were substrates. However, the presence of tRNA reduced the number of ATP analogs being substrates to that number of substrates observed in the aminoacylation. Therefore, it can be concluded that the presence of tRNA is responsible for an increase of specificity. The diastereomers of adenosine 5′-O-(3-thiotriphosphate) (ATPαS), adenosine 5′-O-(2-thiotriphosphate) (ATPβS), and adenosine 5′-O-(3-thiotriphosphate) (ATPγS) were tested with various divalent metals as substrates in the pyrophosphate exchange reaction. The Sp diastereomer of ATPαS is a substrate with Mg2+, whereas the Rp diastereomer is inactive. Both diastereomers are inactive in the presence of Zn2+. Since Zn2+ binds preferentially to the sulfur atom, an explanation of these results is that the Mg2+ ion is not bound to the α-phosphate. Only the Sp isomer of the diastereomers of ATPβS acts as substrate in the presence of Mg2+. The stereospecificity becomes reversed in the presence of Zn2+. ATPγS acts as substrate with both Mg2+ and Zn2+. These results suggest that the Δ isomer of the β,γ-bidentate ATP-Mg2+ complex is the substrate for this enzyme. From these results a molecular model of the ATP-Mg2+ complex in the active site can be derived in which the nucleotide is attached to the enzyme by interactions in which the 3′-OH and 6-NH2 group, one oxygen atom of the α-phosphorus atom, and the coordinated magnesium cation are all involved.  相似文献   

13.
Suh BC  Hille B 《Neuron》2002,35(3):507-520
Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.  相似文献   

14.
The kinetic properties of the hydrolyses of 8-Br ATP and 8-SCH3 ATP by myosin [EC 3.6.1.3] and actomyosin were compared with those of ATP, and the following results were obtained. The Ca-NTPase activities of myosin using these two ATP analogs as substrates were smaller than that of ATPase, and the NTPase activities toward these analogs were strongly suppressed by EDTA. The Mg-NTPase activities toward these analogs were higher in a medium of high ionic strength than in a medium of low ionic strength, in contrast to the activity of Mg-ATPase. These analogs did not produce any initial burst of Pi liberation, activation of myosin NTPase by F-actin, or superprecipitation of actomyosin. The interactions between 8-Br ATP and HMM, acto-HMM, actomyosin, and myofibrils were studied in detail in the presence of Mg2+ in medium of low ionic strength. The Michaelis constant, Km, and the maximum rate, Vm, of 8-Br ATPase of HMM were 27 muM and 21 min-1, respectively. The fluorescence change of HMM induced by 8-Br ATP also followed the Michaelis-Menten equation, and the Michaelis constant, Kf1, was as low as 4 muM. Acto-HMM and acto-S-1 were fully dissociated by the addition of 8-Br ATP. The relation between the extent of dissociation of acto-HMM and the concentration of 8-Br ATP followed the Michaelis-Menten equation, and the apparent dissociation constant, Kd, was 22 muM. This Kd value is almost equal to the Km value of 8-Br ATPase of HMM described above. Myofibrillar contraction was not supported by 8-Br ATP. It was concluded that in the myosin NTPase reaction with 8-Br ATP as a substrate, M2NTP but not MNDPP is formed in route (1), while MNTP is formed in route (2). It was also concluded that the key intermediate for the actomyosin NTPase reaction is MNDPP, and that dissociation of acto-HMM is induced by the formation of M2NTP and MNTP in routes (1) and (2), respectively.  相似文献   

15.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

16.
Various ATP and AMP analogs with modifications in the base moiety or in the polyphosphate chain were tested as substrates and/or as allosteric effectors of rabbit muscle phosphofructokinase. The significance of different structural elements for the nucleotide-enzyme interaction is discussed. While all investigated triphosphate analogs with a modified purine base are substrates for phosphofructokinase, those with a modified polyphosphate chain are competitive inhibitors. 5′-Adenylyl-(β,γ-methylene) diphosphonate, which is a weak competitive inhibitor, is shown to have a high affinity for the allosteric site of phosphofructokinase. Among the investigated monophosphate analogs only adenosine-N1-oxide 5′-monophosphate can reverse the inhibitory effect of excessive ATP. A qualitative correlation is found between the quenching of the phospho-fructokinase-8-anilino-1-naphthalene-sulfonate fluorescence and the ability of the nucleotide analogs to act as substrates or as allosteric effectors of phosphofructokinase. It is concluded that the interaction of ATP with the allosteric site is more complex than that with the substrate site and requires both an intact adenine moiety and an intact terminal phosphate group for full activity.  相似文献   

17.
Plant genomes encode hundreds of protein kinases, yet only for a small fraction of them precise functions and phosphorylation targets have been identified. Recently, we applied a chemical-genetic approach to sensitize the tomato serine/threonine kinase Pto to analogs of PP1, an ATP-competitive and cell-permeable small-molecule inhibitor. The Pto kinase confers resistance to Pst bacteria by activating immune responses upon specific recognition of bacterial effectors. By using PP1 analogs in combination with the analog-sensitive Pto, we shed new light on the role of Pto kinase activity in effector recognition and signal transduction. Here we broaden the use of this chemical-genetic approach to another defense-related plant protein kinase, the MAP kinase LeMPK3. In addition, we show that analog-sensitive but not wild-type kinases are able to use unnatural N6-modified ATP analogs as phosphodonors that can be exploited for tagging direct phosphorylation targets of the kinase of interest. Thus, sensitization of kinases to analogs of the small-molecule inhibitor PP1 and ATP can be an effective tool for the discovery of cellular functions and phosphorylation substrates of plant protein kinases.Key words: chemical genetics, gatekeeper, LeMPK3, protein kinase, Pto, small-molecule inhibitor  相似文献   

18.
Various base and sugar modified derivatives of ATP and UTP were used as substrate analogs for the steady state initiation reaction ATP+UTP=pppApU and the single step addition reaction ApC+ATP=ApCpA. These reactions were carried out by E. coli RNA polymerase on T7 DNA in the presence of rifampicin. The steady state kinetic parameters of the analogs, either as substrates or inhibitors, were determined. On the basis of the obtained results it is concluded that purine NTP s in initiation require anti-conformation about the glycosidic bonds as well as gauche-gauche conformation of the C(4')-C(5') bonds. The latter conformation is also a prerequisite for substrates in elongation, whereas strict anti-conformation of glycosidic bonds is not.  相似文献   

19.
The nucleotide substrate specificity of yeast poly(A) polymerase (yPAP) toward various C-2- and C-8-modified ATP analogs was examined. 32P-Radiolabeled RNA oligonucleotide primers were incubated with yPAP in the absence of ATP to assay polyadenylation using unnatural ATP substrates. The C-2-modified ATP analogs 2-amino-ATP and 2-chloro (Cl)-ATP were excellent substrates for yPAP. 8-Amino-ATP, 8-azido-ATP, and 8-aza-ATP all produced chain termination of polyadenylation, and no primer extension was observed with the C-8-halogenated derivatives 8-Br-ATP and 8-Cl-ATP. The effects of modified ATP analogs on ATP-dependent poly(A) tail synthesis by yPAP were also examined. Whereas C-2 substitution (2-amino-ATP and 2-Cl-ATP) had little effect on poly(A) tail length, C-8 substitution produced moderate (8-amino-ATP, 8-azido-ATP, and 8-aza-ATP) to substantial (8-Br-ATP and 8-Cl-ATP) reduction in poly(A) tail length. To model the biochemical consequences of 8-Cl-Ado incorporation into RNA primers, a synthetic RNA primer containing a 3'-terminal 8-Cl-AMP residue was prepared. Polyadenylation of this modified RNA primer by yPAP in the presence of ATP was blocked completely. To probe potential mechanisms of inhibition, two-dimensional NMR spectroscopy experiments were used to examine the conformation of two C-8-modified AMP nucleotides, 8-Cl-AMP and 8-amino-AMP. C-8 substitution in adenosine analogs shifted the ribose sugar pucker equilibrium to favor the DNA-like C-2'-endo form over the C-3'-endo (RNA-like) conformation, which suggests a potential mechanism for polyadenylation inhibition and chain termination. Base-modified ATP analogs may exert their biological effects through polyadenylation inhibition and thus may provide useful tools for investigating polyadenylation biochemistry within cells.  相似文献   

20.
The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号