首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues, including H50 and K14 in THA IPK and H58 and K18 in Streptomyces wedmorensis FomA. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase family. We measured the fosfomycin kinase activity of THA IPK [K(m) = 15.1 ± 1.0 mM, and k(cat) = (4.0 ± 0.1) × 10?2 s?1], resulting in a catalytic efficiency (k(cat)/K(m) = 2.6 M?1 s?1) that is 5 orders of magnitude lower than that of the native reaction. Fosfomycin is a competitive inhibitor of IPK (K(i) = 3.6 ± 0.2 mM). Molecular dynamics simulation of the IPK·fosfomycin·MgATP complex identified two binding poses for fosfomycin in the IP binding site, one of which results in a complex analogous to the native IPK·IP·ATP complex that engages H50 and the lysine triangle formed by K5, K14, and K205. The other binding pose leads to a dead-end complex that engages K204 near the IP binding site to bind fosfomycin. Our findings suggest a mechanism for acquisition of FomA-based antibiotic resistance in fosfomycin-producing organisms.  相似文献   

2.
Yoon HY  Cho EH  Yang SJ  Lee HJ  Huh JW  Choi MM  Cho SW 《Biochimie》2004,86(4-5):261-267
In the present study, the cassette mutagenesis at several putative positions (K94, G96, K118, K130, or D172) was performed to examine the residues involved in the glutamate-binding of the human glutamate dehydrogenase isozymes (hGDH1 and hGDH2). None of the mutations tested affected the expression or stability of the proteins. There was dramatic reduction in the catalytic efficiency in mutant proteins at K94, G96, K118, or K130 site, but not at D172 site. The K(M) values for glutamate were 4-10-fold greater for the mutants at K94, G96, or K118 site than for the wild-type hGDH1 and hGDH2, whereas no differences in the K(M) values for NAD(+) were detected between the mutant and wild-type enzymes. For K130Y mutant, the K(M) value for glutamate increased 1.6-fold, whereas the catalytic efficiency (k(cat)/K(M)) showed only 2-3% of the wild-type. Therefore, the decreased catalytic efficiency of the K130 mutant mainly results from the reduced k(cat) value, suggesting a possibility that the K130Y residue may be involved in the catalysis rather than in the glutamate-binding. The D172Y mutant did not show any changes in k(cat) value and K(M) values for glutamate and NAD(+), indicating that D172Y is not directly involved in catalysis and substrates binding of the hGDH isozymes. For sensitivity to ADP activation, only the D172Y mutant showed a reduced sensitivity to ADP activation. The reduction of ADP activation in D172Y mutant was more profoundly observed in hGDH2 than in hGDH1. There were no differences in their sensitivities to GTP inhibition between the wild-type and mutant GDHs at all positions tested. Our results suggest that K94, G96, and K118 residues play an important role, although at different degrees, in the binding of glutamate to hGDH isozymes.  相似文献   

3.
Cellobiose dehydrogenase is an extracellular flavocytochrome, which catalyzes the oxidation of cellobiose and other soluble oligosaccharides to their respective lactones, while reducing various one- and two-electron acceptors. Two residues at the active site of the flavin domain, His689 and Asn732, have been proposed to play critical roles in the oxidation of the substrate. To test these proposals, each residue was substituted with either a Gln, Asn, Glu, Asp, Val, Ala, and/or a His residue by site-directed mutagenesis, using a homologous expression system previously developed in our laboratory. This enabled an examination of the functional, stereochemical, and electrostatic constraints for binding and oxidation of the substrate. The steady-state kinetic parameters for the variant proteins were compared using cellobiose and its epimer, lactose, as the substrates. The H689 variants all exhibit >1000-fold lower k(cat) values, while the K(m) values for both substrates in these variants are similar to that of the wild-type enzyme. This supports the proposed role of this His residue as a general base in catalysis. The N732 variants exhibit a range of kinetic parameters: the k(cat) values for oxidation are 5-4000-fold lower than that for the wild-type enzyme, while the K(m) values vary between similar to and 60-fold higher than that for the wild-type. The difference in binding energy between cellobiose and lactose was calculated using the relationship delta(delta G) = -RT ln[(k(cat)/K(m))(lactose)/(k(cat)/K(m))(cellobiose)]. This calculation for the wild-type enzyme suggests that lactose binds considerably more weakly than cellobiose (7.2 kJ/mol difference), which corresponds to one extra (cumulative) hydrogen bond for cellobiose over lactose. Mutations at Asn732 result in a further weakening of lactose binding over cellobiose (2-4 kJ/mol difference). The results support a role for Asn732 in the binding of the substrate.  相似文献   

4.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

5.
Hint1 is a homodimeric protein and member of the ubiquitous HIT superfamily. Hint1 catalyzes the hydrolysis of purine phosphoramidates and lysyl-adenylate generated by lysyl-tRNA synthetase (LysRS). To determine the importance of homodimerization on the biological and catalytic activity of Hint1, the dimer interface of human Hint1 (hHint1) was destabilized by replacement of Val(97) of hHint1 with Asp, Glu, or Arg. The mutants were shown to exist as monomers in solution by a combination of size exclusion chromatograph, static light scattering, and chemically induced dimerization studies. Circular dichroism studies revealed little difference between the stability of the V97D, V97E, and wild-type hHint1. Relative to wild-type and the V97E mutant, however, significant perturbation of the V97D mutant structure was observed. hHint1 was shown to prefer 3-indolepropionic acyl-adenylate (AIPA) over tryptamine adenosine phosphoramidate monoester (TpAd). Wild-type hHint1 was found to be 277- and 1000-fold more efficient (k(cat)/K(m) values) than the V97E and V97D mutants, respectively. Adenylation of wild-type, V97D, and V97E hHint1 by human LysRS was shown to correlate with the mutant k(cat)/K(m) values using 3-indolepropionic acyl-adenylate as a substrate, but not tryptamine adenosine phosphoramidate monoester. Significant perturbations of the active site residues were not detected by molecular dynamics simulations of the hHint1s. Taken together, these results demonstrate that for hHint1; 1) the efficiency (k(cat)/K(m)) of acylated AMP hydrolysis, but not maximal catalytic turnover (k(cat)), is dependent on homodimerization and 2) the hydrolysis of lysyl-AMP generated by LysRS is not dependent on homodimerization if the monomer structure is similar to the wild-type structure.  相似文献   

6.
Tyrosine 343 in human sulfite oxidase (SO) is conserved in all SOs sequenced to date. Intramolecular electron transfer (IET) rates between reduced heme (Fe(II)) and oxidized molybdenum (Mo(VI)) in the recombinant wild-type and Y343F human SO were measured for the first time by flash photolysis. The IET rate in wild-type human SO at pH 7.4 is about 37% of that in chicken SO with a similar decrease in k(cat). Steady-state kinetic analysis of the Y343F mutant showed an increase in K(m)(sulfite) and a decrease in k(cat) resulting in a 23-fold attenuation in the specificity constant k(cat)/K(m)(sulfite) at the optimum pH value of 8.25. This indicates that Tyr-343 is involved in the binding of the substrate and catalysis within the molybdenum active site. Furthermore, the IET rate constant in the mutant at pH 6.0 is only about one-tenth that of the wild-type enzyme, suggesting that the OH group of Tyr-343 is vital for efficient IET in SO. The pH dependences of IET rate constants in the wild-type and mutant SO are consistent with the previously proposed coupled electron-proton transfer mechanism.  相似文献   

7.
Stewart RC  Jahreis K  Parkinson JS 《Biochemistry》2000,39(43):13157-13165
The histidine protein kinase CheA plays a central role in the bacterial chemotaxis signal transduction pathway. Autophosphorylated CheA passes its phosphoryl group to CheY very rapidly (k(cat) approximately 750 s(-)(1)). Phospho-CheY in turn influences the direction of flagellar rotation. The autophosphorylation site of CheA (His(48)) resides in its N-terminal P1 domain. The adjacent P2 domain provides a high-affinity binding site for CheY, which might facilitate the phosphotransfer reaction by tethering CheY in close proximity to the phosphodonor located in P1. To explore the contribution of P2 to the CheA --> CheY phosphotransfer reaction in the Escherichia coli chemotaxis system, we examined the transfer kinetics of a mutant CheA protein (CheADeltaP2) in which the 98 amino acid P2 domain had been replaced with an 11 amino acid linker. We used rapid-quench and stopped-flow fluorescence experiments to monitor phosphotransfer to CheY from phosphorylated wild-type CheA and from phosphorylated CheADeltaP2. The CheADeltaP2 reaction rates were significantly slower and the K(m) value was markedly higher than the corresponding values for wild-type CheA. These results indicate that binding of CheY to the P2 domain of CheA indeed contributes to the rapid kinetics of phosphotransfer. Although phosphotransfer was slower with CheADeltaP2 (k(cat)/K(m) approximately 1.5 x 10(6) M(-)(1) s(-)(1)) than with wild-type CheA (k(cat)/K(m) approximately 10(8) M(-)(1) s(-)(1)), it was still orders of magnitude faster than the kinetics of CheY phosphorylation by phosphoimidazole and other small molecule phosphodonors (k(cat)/K(m) approximately 5-50 M(-)(1) s(-)(1)). We conclude that the P1 domain of CheA also makes significant contributions to phosphotransfer rates in chemotactic signaling.  相似文献   

8.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

9.
Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg(2+)-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Crystal structures of MR reveal that the phenyl group of all ground-state ligands is located within a hydrophobic cavity, remote from the site of proton abstraction. MR forms numerous electrostatic and H-bonding interactions with the alpha-OH and carboxyl groups of the substrate, suggesting that these polar groups may remain relatively fixed in position during catalysis while the phenyl group is free to move between two binding sites [i.e., the R-pocket and the S-pocket for binding the phenyl group of (R)-mandelate and (S)-mandelate, respectively]. We show that MR binds benzilate (K(i) = 0.67 +/- 0.12 mM) and (S)-cyclohexylphenylglycolate (K(i) = 0.50 +/- 0.03 mM) as competitive inhibitors with affinities similar to that which the enzyme exhibits for the substrate. Therefore, the active site can simultaneously accommodate two phenyl groups, consistent with the existence of an R-pocket and an S-pocket. Wild-type MR exhibits a slightly higher affinity for (S)-mandelate [i.e., K(m)(S)(-)(man) < K(m)(R)(-)(man)] but catalyzes the turnover of (R)-mandelate slightly more rapidly (i.e., k(cat)(R)(-->)(S) > k(cat)(S)(-->)(R)). Upon introduction of steric bulk into the S-pocket using site-directed mutagenesis (i.e., the F52W, Y54W, and F52W/Y54W mutants), this catalytic preference is reversed. Although the catalytic efficiency (k(cat)/K(m)) of all the mutants was reduced (11-280-fold), all mutants exhibited a higher affinity for (R)-mandelate than for (S)-mandelate, and higher turnover numbers with (S)-mandelate as the substrate, relative to those with (R)-mandelate. (R)- and (S)-2-hydroxybutyrate are expected to be less sensitive to the additional steric bulk in the S-pocket. Unlike those for mandelate, the relative binding affinities for these substrate analogues are not reversed. These results are consistent with steric obstruction in the S-pocket and support the hypothesis that the phenyl group of the substrate may move between an R-pocket and an S-pocket during racemization. These conclusions were also supported by modeling of the binary complexes of the wild-type and F52W/Y54W enzymes with the substrate analogues (R)- and (S)-atrolactate, and of wild-type MR with bound benzilate using molecular dynamics simulations.  相似文献   

10.
Ma H  Ratnam K  Penning TM 《Biochemistry》2000,39(1):102-109
Rat liver 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD), an aldo-keto reductase, binds NADP(+) in an extended anti-conformation across an (alpha/beta)(8)-barrel. The orientation of the nicotinamide ring, which permits stereospecific transfer of the 4-pro-R hydride from NAD(P)H to substrate, is achieved by hydrogen bonds formed between the C3-carboxamide of the nicotinamide ring and Ser 166, Asn 167, and Gln 190 and by pi-stacking between this ring and Tyr 216. These residues were mutated to yield S166A, N167A, Q190A, and Y216S. In these mutants, K(d)(NADP(H)) increased by 2-11-fold but without a significant change in K(d)(NAD(H)). Steady-state kinetic parameters showed that K(m)(NADP)()+ increased 13-151-fold, and this was accompanied by comparable decreases in k(cat)/K(m)(NADP)()+. By contrast, K(m)(NAD)()+ increased 4-8-fold, but changes in k(cat)/K(m)(NAD)()+ were more dramatic and ranged from 23- to 930-fold. Corresponding changes in binding energies indicated that each residue contributed equally to the binding of NADP(H) in the ground and transition states. However, the same residues stabilized the binding of NAD(H) only in the transition state. These observations suggest that different modes of binding exist for NADP(H) and NAD(H). Importantly, these modes were revealed by mutating residues in the nicotinamide pocket indicating that direct interactions with the 2'-phosphate in the adenine mononucleotide is not the sole determinant of cofactor preference. The single mutations were unable to invert or racemize the stereochemistry of hydride transfer even though the nicotinamide pocket can accommodate both anti- and syn-conformers once the necessary hydrogen bonds are eliminated. When 4-pro-R-[(3)H]NADH was used to monitor incorporation into [(14)C]-5alpha-dihydrotestosterone, a decrease in the (3)H:(14)C ratio was observed in the mutants relative to wild-type enzyme reflecting a pronounced primary kinetic isotope effect. This observation coupled with the change in the binding energy for NAD(P)(H) in the transition state suggests that these mutants have altered the reaction trajectory for hydride transfer.  相似文献   

11.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

12.
Pan JJ  Yang LW  Liang PH 《Biochemistry》2000,39(45):13856-13861
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes condensation of eight molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C(55)-undecaprenyl pyrophosphate. We have mutated the aspartates and glutamates in the five conserved regions (I to V) of UPPs protein sequence to evaluate their effects on substrate binding and catalysis. The mutant enzymes including D26A, E73A, D150A, D190A, E198A, E213A, D218A, and D223A were expressed and purified to great homogeneity. Kinetic analyses of these mutant enzymes indicated that the substitution of D26 in region I with alanine resulted in a 10(3)-fold decrease of k(cat) value compared to wild-type UPPs. Its IPP K(m) value has only minor change. The mutagenesis of D150A has caused a much lower IPP affinity with IPP K(m) value 50-fold larger than that of wild-type UPPs but did not affect the FPP K(m) and the k(cat). The E213A mutant UPPs has a 70-fold increased IPP K(m) value and has a 100-fold decreased k(cat) value compared to wild-type. These results suggest that D26 of region I is critical for catalysis and D150 in region IV plays a significant role of IPP binding. The E213 residue in region V is also important in IPP binding as well as catalysis. Other mutant UPPs enzymes in this study have shown no significant change (<5-fold) of k(cat) with exception of E73A and D218A. Both enzymes have 10-fold lower k(cat) value relative to wild-type UPPs.  相似文献   

13.
A selection strategy has been developed to identify amino acid residues involved in subunit interactions that coordinate the two half-reactions catalyzed by glutamine amidotransferases. The protein structures known for this class of enzymes have revealed that ammonia is shuttled over long distances and that each amidotransferase evolved different molecular tunnels for this purpose. The heterodimeric Escherichia coli imidazole glycerol phosphate (IGP) synthase was probed to assess if residues in the substrate amination subunit (HisF) are critical for the glutaminase activity in the HisH subunit. The activity of the HisH subunit is dependent upon binding of the nucleotide substrate at the HisF active site. This regulatory function has been exploited as a biochemical selection of mutant HisF subunits that retain full activity with ammonia as a substrate but, when constituted as a holoenzyme with wild-type HisH, impair the glutamine-dependent activity of IGP synthase. The steady-state kinetic constants for these IGP synthases with HisF alleles showed three distinct effects depending upon the site of mutation. For example, mutation of the R5 residue has similar effects on the glutamine-dependent amidotransfer reaction; however, k(cat)/K(m) for the glutaminase half-reaction was increased 10-fold over that for the wild-type enzyme with nucleotide substrate. This site appears essential for coupling of the glutamine hydrolysis and ammonia transfer steps and is the first example of a site remote to the catalytic triad that modulates the process. The results are discussed in the context of recent X-ray crystal structures of glutamine amidotransferases that relate the glutamine binding and acceptor binding sites.  相似文献   

14.
The first stage in hemostasis is the binding of the platelet membrane receptor glycoprotein (GP) Ib-IX complex to the A1 domain of von Willebrand factor in the subendothelium. A bleeding disorder associated with this interaction is platelet-type von Willebrand disease, which results from gain-of-function (GOF) mutations in amino acid residues 233 or 239 of the GP Ibalpha subunit of GP Ib-IX. Using optical tweezers and a quadrant photodetector, we investigated the binding of A1 to GOF and loss-of-function mutants of GP Ibalpha with mutations in the region containing the two known naturally occurring mutations. By dynamically measuring unbinding force profiles at loading rates ranging from 200-20,000 pN/s, we found that the bond strengths between A1 and GP Ibalpha GOF mutants (233, 235, 237, and 239) were significantly greater than the A1/wild-type GP Ib-IX bond at all loading rates examined (p < 0.05). In addition, mutants 231 and 232 exhibited significantly lower bond strengths with A1 than the wild-type receptors (p < 0.05). We computed unloaded dissociation rate constant (k(off)(0)) values for interactions involving mutant and wild-type GP Ib-IX receptors with A1 and found the A1/wild-type GP Ib-IX k(off)(0) value of 5.47 +/- 0.25 s(-1) to be significantly greater than the GOF k(off)(0) values and significantly less than the loss-of-function k(off)(0) values. Our data illustrate the importance of the bond kinetics associated with the VWF/GP Ib-IX interaction in hemostasis and also demonstrate the drastic changes in binding that can occur when only a single amino acid of GP Ibalpha is altered.  相似文献   

15.
We have probed the electrophilic binding site (H-site) of human glutathione transferase P1-1 through mutagenesis of two valines, Val 10 and Val 35, into glycine and alanine, respectively. These two residues were previously shown to be the only conformationally variable residues in the H-site and hence may play important roles in cosubstrate recognition and/or product dissociation. Both of these mutant enzymes have been expressed in Escherichia coli and purified and their kinetic properties characterized. The results demonstrate that Val35Ala behaves similarly to wild-type, whereas Val10Gly exhibits a strong decrease of k(cat) and k(cat)/K(m) (cosub) toward two selected cosubstrates: ethacrynic acid and 1-chloro-2,4-dinitrobenzene. Pre-steady-state kinetic analysis of the GSH conjugation with ethacrynic acid shows that both wild-type and Val10Gly mutant enzymes exhibit the same rate-limiting step: the dissociation of product. However, in the Val10Gly mutant there is an increased energetic barrier which renders the dissociation of product more difficult. Similar results are found for the Val10Gly mutant with 1-chloro-2,4-dinitrobenzene as cosubstrate. With this latter cosubstrate, Val 10 also exerts a positive role in the conformational transitions of the ternary complex before the chemical event. Crystallographic analysis of the Val10Gly mutant in complex with the inhibitor S-hexyl-GSH suggests that Val 10 optimally orientates products, thus promoting their exit from the active site.  相似文献   

16.
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.  相似文献   

17.
Ferrochelatase catalyzes the terminal step of the heme biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. A conserved loop motif was shown to form part of the active site and contact the bound porphyrin by molecular dynamics calculations and structural analysis. We applied a random mutagenesis approach and steady-state kinetic analysis to assess the role of the loop motif in murine ferrochelatase function, particularly with respect to porphyrin interaction. Functional substitutions in the 10 consecutive loop positions Gln(248)-Leu(257) were identified by genetic complementation in Escherichia coli strain Deltavis. Lys(250), Val(251), Pro(253), Val(254), and Pro(255) tolerated a variety of replacements including single substitutions and contained low informational content. Gln(248), Ser(249), Gly(252), Trp(256), and Leu(257) possessed high informational content, since permissible replacements were limited and only observed in multiply substituted mutants. Selected active loop variants exhibited k(cat) values comparable with or higher than that of wild-type murine ferrochelatase. The K(m) values for porphyrin increased, except for the single mutant V251L. Other than a moderate increase observed in the triple mutant S249A/K250Q/V251C, the K(m) values for Fe(2+) were lowered. The k(cat)/K(m) for porphyrin remained largely unchanged, with the exception of a 10-fold reduction in the triple mutant K250M/V251L/W256Y. The k(cat)/K(m) for Fe(2+) was improved. Molecular modeling of these active loop variants indicated that loop mutations resulted in alterations of the active site architecture. However, despite the plasticity of the loop primary structure, the relative spatial positioning of the loop in the active site appeared to be maintained in functional variants, supporting a role for the loop in ferrochelatase function.  相似文献   

18.
Phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri catalyzes the nicotinamide adenine dinucleotide-dependent oxidation of phosphite to phosphate. The enzyme belongs to the family of D-hydroxy acid dehydrogenases (DHDHs). A search of the protein databases uncovered many additional putative phosphite dehydrogenases. The genes encoding four diverse candidates were cloned and expressed, and the enzymes were purified and characterized. All oxidized phosphite to phosphate and had similar kinetic parameters despite a low level of pairwise sequence identity (39-72%). A recent crystal structure identified Arg301 as a residue in the active site that has not been investigated previously. Arg301 is fully conserved in the enzymes shown here to be PTDHs, but the residue is not conserved in other DHDHs. Kinetic analysis of site-directed mutants of this residue shows that it is important for efficient catalysis, with an ~100-fold decrease in k(cat) and an almost 700-fold increase in K(m,phosphite) for the R301A mutant. Interestingly, the R301K mutant displayed a slightly higher k(cat) than the parent PTDH, and a more modest increase in K(m) for phosphite (nearly 40-fold). Given these results, Arg301 may be involved in the binding and orientation of the phosphite substrate and/or play a catalytic role via electrostatic interactions. Three other residues in the active site region that are conserved in the PTDH orthologs but not DHDHs were identified (Trp134, Tyr139, and Ser295). The importance of these residues was also investigated by site-directed mutagenesis. All of the mutants had k(cat) values similar to that of the wild-type enzyme, indicating these residues are not important for catalysis.  相似文献   

19.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.  相似文献   

20.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 →Ser) and R166K (Arg 166 →Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号