首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
Cranial placodes are focal regions of columnar epithelium next to the neural tube that contribute to sensory ganglia and organs in the vertebrate head, including the olfactory epithelium and the crystalline lens of the eye. Using focal dye labelling within the presumptive placode domain, we show that lens and nasal precursors arise from a common territory surrounding the anterior neural plate. They then segregate over time and converge to their final positions in discrete placodes by apparently directed movements. Since these events closely parallel the separation of eye and antennal primordia (containing olfactory sensory cells) from a common imaginal disc in Drosophila, we investigated whether the vertebrate homologues of Distalless (Dll) and Eyeless (Ey), which determine antennal and eye identity in the fly, play a role in segregation of lens and nasal precursors in the chick. Dlx5 and Pax6 are initially co-expressed by future lens and olfactory cells. As soon as presumptive lens cells acquire columnar morphology all Dlx family members are down-regulated in the placode, while Pax6 is lost in the olfactory region. Lens precursor cells that express ectopic Dlx5 never acquire lens-specific gene expression and are excluded from the lens placode to cluster in the head ectoderm. These results suggest that the loss of Dlx5 is required for cells to adopt a lens fate and that the balance of Pax6 and Dlx expression regulates cell sorting into appropriate placodal domains.  相似文献   

4.
5.
The roles of Pax6 were investigated in the murine eye and the olfactory epithelium by analysing gene expression and distribution of Pax6(-/-) cells in Pax6(+/+) <--> Pax6(-/-) chimeras. It was found that between embryonic days E10.5 and E16.5 Pax6 is autonomously required for cells to contribute fully not only to the corneal epithelium, where Pax6 is expressed at high levels, but also to the to the corneal stroma and endothelium, where the protein is detected at very low levels. Pax6(-/-) cells contributed only poorly to the neural retina, forming small clumps of cells that were normally restricted to the ganglion cell layer at E16.5. Pax6(-/-) cells in the retinal pigment epithelium could express Trp2, a component of the pigmentation pathway, at E14.5 and a small number went on to differentiate and produce pigment at E16.5. The segregation and near-exclusion of mutant cells from the nasal epithelium mirrored the behaviour of mutant cells in other developmental contexts, particularly the lens, suggesting that common primary defects may be responsible for diverse Pax6-related phenotypes.  相似文献   

6.
We have compared Pax6 expression during embryonic development in the eyed surface form (surface fish) and several different eyeless cave forms (cavefish) of the teleost Astyanax mexicanus. Despite lacking functional eyes as adults, cavefish embryos form small optic primordia, which later arrest in development and show various degrees of eye degeneration. The pattern of Pax6 mRNA expression was modified early and late during cavefish development. In early surface fish embryos, two bilateral Pax6 expression domains are present in the anterior neural plate, which extend across the midline and fuse to form the forebrain and optic primordia. In cavefish embryos, these Pax6 domains are diminished in size and remain separated, resulting in an anterior gap in Pax6 expression and presumably the formation of smaller optic primordia. The anterior gap in Pax6 expression was confirmed by double staining for Pax6 and distalless-3 mRNA, which marks the anterior margin of the neural plate and is unaltered in cavefish. Similar anterior gaps in Pax6 expression occurred in independently derived cavefish populations, suggesting that they are important in eye degeneration. Later during surface fish development, Pax6 protein is expressed in the cornea, lens, and ganglion and amacrine cells of the neural retina. Pax6 expression was gradually reduced during cavefish lens development, concomitant with lens arrest and degeneration, and was absent in the corneal epithelium, which does not differentiate in cavefish. In contrast, Pax6 expression in the retinal ganglion and amarcine cells is unmodified in cavefish, despite retarded retinal development. The results suggest that changes in Pax6 expression are involved in the evolution of cavefish eye degeneration.  相似文献   

7.
Pax6 induces ectopic eyes in a vertebrate.   总被引:13,自引:0,他引:13  
  相似文献   

8.
9.
Most vertebrates have two olfactory organs, the olfactory epithelium (OE) and the vomeronasal organ. African clawed frog, Xenopus laevis, which spends their entire life in water, have three types of olfactory sensory epithelia: the OE, the middle chamber epithelium (MCE) and the vomeronasal epithelium (VNE). The axons from these epithelia project to the dorsal part of the main olfactory bulb (d-MOB), the ventral part of the MOB (v-MOB) and the accessory olfactory bulb, respectively. In the MCE, which is thought to function in water, two types of receptor neurons (RNs) are intermingled and express one of two types of G-proteins, Golf and Go, respectively. However, axonal projections from these RNs to the v-MOB are not fully understood. In this study, we examined the expression of G-proteins by immunohistochemistry to reveal the projection pattern of olfactory RNs of Xenopus laevis, especially those in the MCE. The somata of Golf- and Go-positive RNs were separately situated in the upper and lower layers of the MCE. The former were equipped with cilia and the latter with microvilli on their apical surface. These RNs are suggested to project to the rostromedial and the caudolateral regions of the v-MOB, respectively. Such segregation patterns observed in the MCE and v-MOB are also present in the OE and olfactory bulbs of most bony fish. Thus, Xenopus laevis is a very interesting model to understand the evolution of vertebrate olfactory systems because they have a primitive, fish-type olfactory system in addition to the mammalian-type olfactory system.  相似文献   

10.
11.
The olfactory bulb is a protruding structure formed at the rostral end of the telencephalon. Pax6-mutant mice and rats lack the olfactory bulb and, instead, develop an olfactory bulb-like structure at the lateral part of the telencephalon. Here, we report that ectopic formation of the olfactory bulb-like structure in these mutants is caused by the abnormal migration of mitral cell progenitors, which first differentiate within the olfactory bulb. Cell-tracing experiments in whole embryos in culture indicate that, in the mutants, the mitral cell progenitors that originate from the rostral part of the telencephalon migrate caudally toward the lateral part of the telencephalon. Cell transplantation demonstrates that the abnormal cell migration is not autonomous to the mitral cell progenitors themselves. The mislocation of the olfactory bulb in the mutant is not caused by loss of olfactory nerve innervation. Furthermore, transfection of a Pax6-expression vector to the mutant telencephalon restores the normal migration of mitral cell progenitors. These results provide evidence that Pax6 is required to position the mitral cell progenitors at the rostral end of the telencephalon.  相似文献   

12.
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.  相似文献   

13.
14.
15.
Mutations in the Pax6 gene disrupt telencephalic development, resulting in a thin cortical plate, expansion of proliferative layers, and the absence of the olfactory bulb. The primary defect in the neuronal cell population of the developing cerebral cortex was analysed by using mouse chimeras containing a mixture of wild-type and Pax6-deficient cells. The chimeric analysis shows that Pax6 influences cellular activity throughout corticogenesis. At early stages, Pax6-deficient and wildtype cells segregate into exclusive patches, indicating an inability of different cell genotypes to interact. At later stages, cells are sorted further based on telencephalic domains. Pax6-deficient cells are specifically reduced in the mediocaudal domain of the dorsal telencephalon, indicating a role in regionalization. In addition, Pax6 regulates the process of radial migration of neuronal precursors. Loss of Pax6 particularly affects movement of neuronal precursors at the subventricular zone/intermediate zone boundary at a transitional migratory phase essential for entry into the intermediate zone. We suggest that the primary role of Pax6 is the continual regulation of cell surface properties responsible for both cellular identity and radial migration, defects of which cause regional cell sorting and abnormalities of migration in chimeras.  相似文献   

16.
This work describes a biophysical model of the initial stages of vertebrate olfactory system containing structures representing the olfactory epithelium and bulb. Its main novelty is the introduction of gap junctions connecting neurons both in the epithelium and bulb, and of biologically detailed dendrodendritic synapses between granule and mitral cells in the bulb. The model was used to simulate the effect of an odor presentation on the neural activity pattern in the epithelium and bulb. During the time for which an odor is presented with a constant concentration, there are spatiotemporal patterns in the epithelium and bulb generated by the couplings due to the gap junctions and/or dendrodendritic synapses. A study varying the strength of the gap junction coupling shows that the spatiotemporal patterns, both in the epithelium and bulb, are dependent of the coupling strength. It is also shown that the olfactory bulb's spatiotemporal pattern depends on the existence of the dendrodendritic connections between mitral and granule cells. If these spatiotemporal patterns really exist in the early processing stages of the olfactory system they may be used for odor coding and the gap junctions and dendrodendritic synapses might have a role on it.  相似文献   

17.
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.  相似文献   

18.
The olfactory bulb as an independent developmental domain   总被引:2,自引:0,他引:2  
The olfactory system is a good model to study the mechanisms underlying guidance of growing axons to their appropriate targets. The formation of the olfactory bulb involves differentiation of several populations of cells and the initiation of the central projections, all under the temporal and spatial patterns of gene expression. Moreover, the nature of interactions between the olfactory epithelium, olfactory bulb and olfactory cortex at early developmental stages is currently of great interest. To explore these questions more fully, the present review aims to correlate recent data from different developmental studies, to gain insight into the mechanisms involved in the specification and development of the olfactory system. From our studies in the pax6 mutant mice (Sey(Neu)/Sey(Neu)), it was concluded that the initial establishment of the olfactory bulb central projections is able to proceed independently of the olfactory sensory axons from the olfactory epithelium. The challenge that now remains is to consider the validity of the olfactory bulb as an independent development domain. In the course of evaluating these ideas, we will review the orchestra of molecular cues involved in the formation of the projection from the OB to the olfactory cortex.  相似文献   

19.
The Pax6 gene plays a developmental role in various metazoans as the master regulatory gene for eye patterning. Pax6 is also spatially regulated in particular regions of the neural tube. Because the amphioxus has no neuromeres, an understanding of Pax6 expression in the agnathans is crucial for an insight into the origin of neuromerism in the vertebrates. We have isolated a single cognate cDNA of the Pax6 gene, LjPax6, from a Lampetra japonica cDNA library and observed the pattern of its expression using in situ hybridization. Phylogenetic analysis revealed that LjPax6 occurs as an sister group of gnathostome Pax6. In lamprey embryos, LjPax6 is expressed in the eye, the nasohypophysial plate, the oral ectoderm and the brain. In the central nervous system, LjPax6 is expressed in clearly delineated domains in the hindbrain, midbrain and forebrain. We compared the pattern of LjPax6 expression with that of other brain-specific regulatory genes, including LjOtxA, LjPax2/5/8, LjDlx1/6, LjEmx and LjTTF1. Most of the gene expression domains showed conserved pattern, which reflects the situation in the gnathostomes, conforming partly to the neuromeric patterns proposed for the gnathostomes. We conclude that most of the segmented domains of the vertebrate brain were already established in the ancestor common to all vertebrates. Major evolutionary changes in the vertebrate brain may have involved local restriction of cell lineages, leading to the establishment of neuromeres.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号