首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The liver and intestine play crucial roles in maintaining bile acid homeostasis. Here, we demonstrate that fibroblast growth factor 15 (FGF15) signals from intestine to liver to repress the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the classical bile acid synthetic pathway. FGF15 expression is stimulated in the small intestine by the nuclear bile acid receptor FXR and represses Cyp7a1 in liver through a mechanism that involves FGF receptor 4 (FGFR4) and the orphan nuclear receptor SHP. Mice lacking FGF15 have increased hepatic CYP7A1 mRNA and protein levels and corresponding increases in CYP7A1 enzyme activity and fecal bile acid excretion. These studies define FGF15 and FGFR4 as components of a gut-liver signaling pathway that synergizes with SHP to regulate bile acid synthesis.  相似文献   

2.
There is growing evidence that gallstone formation may be genetically determined. Cholesterol 7alpha-hydrolase (CYP7A1) is an enzyme that catalyzes the first, rate-limiting reaction of cholesterol catabolic pathway. Recently, a common c.-278A>C polymorphism (rs3808607:G>T) has been described in CYP7A1 gene, associated with altered plasma lipid levels. The aim of this study was to verify the finding that CYP7A1 polymorphism may be associated with gallstone disease. Frequency and distribution of the studied alleles did not differ significantly between the patients (-278C; minor allele frequency: 0.45) and the controls (0.48). No significant gender-related differences of allele frequencies or distribution were noted. We conclude that CYP7A1 promoter polymorphism is not a valuable marker of gallstone disease susceptibility in a Polish population.  相似文献   

3.
Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.  相似文献   

4.
The fibroblast growth factor (FGF) receptor complex is a regulator of adult organ homeostasis in addition to its central role in embryonic development and wound healing. FGF receptor 4 (FGFR4) is the sole FGFR receptor kinase that is significantly expressed in mature hepatocytes. Previously, we showed that mice lacking mouse FGFR4 (mR4(-/-)) exhibited elevated fecal bile acids, bile acid pool size, and expression of liver cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for canonical neutral bile acid synthesis. To prove that hepatocyte FGFR4 was a negative regulator of cholesterol metabolism and bile acid synthesis independent of background, we generated transgenic mice overexpressing a constitutively active human FGFR4 (CahR4) in hepatocytes and crossed them with the FGFR4-deficient mice to generate CahR4/mR4(-/-) mice. In mice expressing active FGFR4 in liver, fecal bile acid excretion was 64%, bile acid pool size was 47%, and Cyp7a1 expression was 10-30% of wild-type mice. The repressed level of Cyp7a1 expression was resistant to induction by a high cholesterol diet relative to wild-type mice. Expression of CahR4 in mR4(-/-) mouse livers depressed bile acid synthesis below wild-type levels from the elevated levels observed in mR4(-/-). Levels of phosphorylated c-Jun N-terminal kinase (JNK), which is part of a pathway implicated in bile acid-mediated repression of synthesis, was 30% of wild-type levels in mR4(-/-) livers, whereas CahR4 livers exhibited an average 2-fold increase. However, cholate still strongly induced phospho-JNK in mR4(-/-) livers. These results confirm that hepatocyte FGFR4 regulates bile acid synthesis by repression of Cyp7a1 expression. Hepatocyte FGFR4 may contribute to the repression of bile acid synthesis through JNK signaling but is not required for activation of JNK signaling by bile acids.  相似文献   

5.
6.
Tateno T  Asa SL  Zheng L  Mayr T  Ullrich A  Ezzat S 《PLoS genetics》2011,7(12):e1002400
Pituitary tumors are common intracranial neoplasms, yet few germline abnormalities have been implicated in their pathogenesis. Here we show that a single nucleotide germline polymorphism (SNP) substituting an arginine (R) for glycine (G) in the FGFR4 transmembrane domain can alter pituitary cell growth and hormone production. Compared with FGFR4-G388 mammosomatotroph cells that support prolactin (PRL) production, FGFR4-R388 cells express predominantly growth hormone (GH). Growth promoting effects of FGFR4-R388 as evidenced by enhanced colony formation was ascribed to Src activation and mitochondrial serine phosphorylation of STAT3 (pS-STAT3). In contrast, diminished pY-STAT3 mediated by FGFR4-R388 relieved GH inhibition leading to hormone excess. Using a knock-in mouse model, we demonstrate the ability of FGFR4-R385 to promote GH pituitary tumorigenesis. In patients with acromegaly, pituitary tumor size correlated with hormone excess in the presence of the FGFR4-R388 but not the FGFR4-G388 allele. Our findings establish a new role for the FGFR4-G388R polymorphism in pituitary oncogenesis, providing a rationale for targeting Src and STAT3 in the personalized treatment of associated disorders.  相似文献   

7.
8.
The protein kinase C (PKC) family of Ca(2+) and/or lipid-activated serine-threonine protein kinases is implicated in the pathogenesis of obesity and insulin resistance. We recently reported that protein kinase Cβ (PKCβ), a calcium-, diacylglycerol-, and phospholipid-dependent kinase, is critical for maintaining whole body triglyceride homeostasis. We now report that PKCβ deficiency has profound effects on murine hepatic cholesterol metabolism, including hypersensitivity to diet-induced gallstone formation. The incidence of gallstones increased from 9% in control mice to 95% in PKCβ(-/-) mice. Gallstone formation in the mutant mice was accompanied by hyposecretion of bile acids with no alteration in fecal bile acid excretion, increased biliary cholesterol saturation and hydrophobicity indices, as well as hepatic p42/44(MAPK) activation, all of which enhance susceptibility to gallstone formation. Lithogenic diet-fed PKCβ(-/-) mice also displayed decreased expression of hepatic cholesterol-7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8b1). Finally, feeding a modified lithogenic diet supplemented with milk fat, instead of cocoa butter, both increased the severity of and shortened the interval for gallstone formation in PKCβ(-/-) mice and was associated with dramatic increases in cholesterol saturation and hydrophobicity indices. Taken together, the findings reveal a hitherto unrecognized role of PKCβ in fine tuning diet-induced cholesterol and bile acid homeostasis, thus identifying PKCβ as a major physiological regulator of both triglyceride and cholesterol homeostasis.  相似文献   

9.

Background

Fibroblast growth factor receptor 4 (FGFR4) is a member of a receptor tyrosine kinase family of enzymes involved in cell cycle control and proliferation. A common single nucleotide polymorphism (SNP) Gly388Arg variant has been associated with increased tumor cell motility and progression of breast cancer, head and neck cancer and soft tissue sarcomas. The present study evaluated the prognostic significance of FGFR4 in oral and oropharynx carcinomas, finding an association of FGFR4 expression and Gly388Arg genotype with tumor onset and prognosis.

Patients and Methods

DNA from peripheral blood of 122 patients with oral and oropharyngeal squamous cell carcinomas was used to determine FGFR4 genotype by PCR-RFLP. Protein expression was assessed by immunohistochemistry (IHC) on paraffin-embedded tissue microarrays.

Results

Presence of allele Arg388 was associated with lymphatic embolization and with disease related premature death. In addition, FGFR4 low expression was related with lymph node positivity and premature relapse of disease, as well as disease related death.

Conclusion

Our results propose FGFR4 profile, measured by the Gly388Arg genotype and expression, as a novel marker of prognosis in squamous cell carcinoma of the mouth and oropharynx.  相似文献   

10.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play important roles in vascular system. FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to coronary artery disease (CAD) in the Chinese population. We identified three polymorphisms in the FGFR4 gene, rs351855G/A (Gly388Arg), rs145302848C/G and rs147603016G/A, by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 658 CAD cases and 692 healthy controls. Results showed that frequencies of GA genotype, AA genotype and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls [odds ratio (OR) = 0.79, 95 % confidence intervals (CI) 0.62-0.99, P = 0.042; OR = 0.58, 95 % CI 0.41-0.81, P = 0.002; and OR = 0.77, 95 % CI 0.66-0.90, P = 0.001, respectively]. The rs147603016GA genotype and A allele also showed lower numbers in CAD cases (OR = 0.58, 95 % CI 0.36-0.93, P = 0.025; and OR = 0.59, 95 % CI 0.40-0.95, P = 0.028). The rs145302848C/G polymorphism did not show any correlation with CAD. Haplotype analysis revealed that the prevalence of ACG haplotype (rs351855, rs145302848 and rs147603016) was significantly decreased in CAD patients (P = 0.002). Our data suggested that the FGFR4 rs351855G/A (Gly388Arg) and rs147603016G/A polymorphisms could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.  相似文献   

11.
The major cholesterol oxidation products in the human circulation are 27-hydroxycholesterol, 24-hydroxycholesterol, and 7alpha-hydroxycholesterol. These oxysterols are formed from cholesterol by specific cytochrome P450 enzymes, CYP27, CYP46, and CYP7A, respectively. An additional oxysterol present in concentrations comparable with 7alpha- and 24-hydroxycholesterol is 4beta-hydroxycholesterol. We now report that patients treated with the antiepileptic drugs phenobarbital, carbamazepine, or phenytoin have highly elevated levels of plasma 4beta-hydroxycholesterol. When patients with uncomplicated cholesterol gallstone disease were treated with ursodeoxycholic acid, plasma 4beta-hydroxycholesterol increased by 45%. Ursodeoxycholic acid, as well as the antiepileptic drugs, are known to induce cytochrome P450 3A. Recombinant CYP3A4 was shown to convert cholesterol to 4beta-hydroxycholesterol, whereas no conversion was observed with CYP1A2, CYP2C9, or CYP2B6. The concentration of 4alpha-hydroxycholesterol in plasma was lower than the concentration of 4beta-hydroxycholesterol and not affected by treatment with the antiepileptic drugs or ursodeoxycholic acid. Together, these data suggest that 4beta-hydroxycholesterol in human circulation is formed by a cytochrome P450 enzyme.  相似文献   

12.
13.
Ma L  Zhang H  Han C  Tong D  Zhang M  Yao Y  Luo Y  Liu X 《DNA and cell biology》2012,31(6):1064-1069
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play crucial roles in vascular smooth muscle cell proliferation and atherosclerosis and, therefore, may potentially affect the development of coronary artery disease (CAD). FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to CAD in the Chinese population. Two polymorphisms, rs351855 (Gly388Arg) and rs641101, were detected by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing in 687 CAD cases and 732 age-matched controls. Data were analyzed using the chi-square test. Results showed that frequencies of GA genotype, AA genotype, and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls (odds ratio (OR)=0.78, 95% confidence intervals (CIs): 0.62-0.98, p=0.034; OR=0.58, 95% CI: 0.42-0.80, p=0.001; and OR=0.77, 95% CI: 0.66-0.90, p=0.001, respectively). The rs641101 polymorphism did not show any correlation with CAD. Haplotype analysis revealed that rs351855 and rs641101 AG haplotype also had lower frequency in CAD patients (OR=0.79, 95% CI: 0.67-0.92, p=0.002). Our data suggested that the FGFR4 rs351855 (Gly388Arg) polymorphism and AG haplotype (rs351855 and rs641101) could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.  相似文献   

14.
The purpose of this study was to specify the main mechanisms at the origin of gallstone formation in very young (5-week old) or young adult (9-week old) LPN hamsters fed a sucrose-rich (normal lipid) lithogenic diet for one and four weeks, respectively. It was also to compare these mechanisms in the two strains of hamsters (LPN and Janvier) or when an anti-lithiasic diet was given by substituting 10% of the sucrose by beta cyclodextrin. The LPN strain of hamsters showed a very high incidence of cholesterol gallstones (73%) after receiving the lithogenic diet. The gallstone formation is very rapid and occurs in less than one week in very young hamsters which show a high cholesterol synthesis rate in the liver. The cholesterol and phospholipid concentrations in the bile, cholesterol saturation index (CSI) and hydrophobic index (HI) increased significantly, concomitantly with a higher liver cholesterol synthesis in very young hamsters and with a lower bile acid synthesis (neutral pathway: cholesterol 7alpha-hydroxylase, CYP7A1 and acidic pathway: sterol 27 hydroxylase, CYP27A1) in young adult hamsters. No significant changes in the lipoprotein receptor expression (LDLr, SR-BI) were observed after feeding the lithogenic diet. Adding ten per cent beta-cyclodextrin, a cyclic oligosaccharide that binds cholesterol and bile acids to the lithogenic diet at the expense of sucrose, induced a decrease in cholesterol bile secretion and in the CSI and HI and prevented cholesterol gallstone formation. Similarly, another strain of Syrian Golden hamsters (" Janvier ") which originally exhibited a smaller bile cholesterol concentration, lower liver cholesterol synthesis and higher CYP7A1/CYP27A1 activity ratio did not carry cholesterol gallstones when fed the lithogenic diet. The main parameters always found at the origin of cholelithiasis in the Hamster are discussed: a higher hepatic cholesterogenesis (HMGCoAR), a higher HMGCoAR/CYP7A1 activity ratio, a lower cholesterol ester storage capacity, a higher CYP27A1/CYP7A1 activity ratio correlated to a higher cholesterol secretion in the bile and higher CSI and HI. In LPN hamsters, the incidence of cholesterol gallstones is nil when CSI + HI < 0.8 and positive for CSI + HI > 0.9. An overall comparison of the data obtained in LPN Hamsters and in Man suggests that this hamster strain appears to be an interesting model for human cholelithiasis.  相似文献   

15.
Fibroblast growth factors and their receptors (FGFRs) play important roles in blood system. FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to non-Hodgkin lymphoma (NHL) in the Chinese population. We identified two polymorphisms in the FGFR4 gene, rs351855G/A (Gly388Arg), and rs147603016G/A, by polymerase chain reaction-restriction fragment length polymorphism in 412 NHL cases and 476 healthy controls. Results showed that frequencies of AA genotype and A allele in rs351855 (Gly388Arg) polymorphism were significantly higher in patients than in controls (odds ratio (OR) 2.12, 95 % confidence intervals (CI) 1.99–3.48, P < 0.0001; OR 1.45, 95 % CI 1.21–1.88, P < 0.0001, respectively; data were adjusted for age and sex). The rs147603016G/A polymorphism did not show any correlation with NHL. When analyzing the survival time of NHL patients with FGFR4 rs351855G/A polymorphism, cases with AA genotype had significantly shorter survival time compared to the patients with GG and GA genotypes (P = 0.002). These results suggested polymorphism in FGFR4 gene was associated with increased susceptibility to NHL and could be used as a prognostic marker for this malignancy.  相似文献   

16.
17.
(24S)-Hydroxycholesterol is formed from cholesterol in the brain and is important for cholesterol homeostasis in this organ. Elimination of (24S)-hydroxycholesterol has been suggested to occur in the liver but little is known about the metabolism of this oxysterol. In the present investigation, we report formation of 7alpha, 24-dihydroxycholesterol in pig and human liver. 7alpha-hydroxylase activity toward both isomers of 24-hydroxycholesterol [(24S) and (24R)] was found in a partially purified and reconstituted cholesterol 7alpha-hydroxylase (CYP7A) enzyme fraction from pig liver microsomes. In contrast, a purified enzyme fraction of pig liver oxysterol 7alpha-hydroxylase with high activity toward 27-hydroxycholesterol did not show any detectable activity toward 24-hydroxycholesterol. 7alpha-Hydroxylation of 24-hydroxycholesterol was strongly inhibited by 7-oxocholesterol, a known inhibitor of CYP7A. Human CYP7A, recombinantly expressed in Escherichia coli and in simian COS cells, showed 7alpha-hydroxylase activity toward both cholesterol and the two isomers of 24-hydroxycholesterol, with a preference for the (24S)-isomer. Our results show that 24-hydroxycholesterol is metabolized by CYP7A, an enzyme previously considered to be specific for cholesterol and cholestanol and not active toward oxysterols. Because CYP7A is the rate-limiting enzyme in the major pathway of bile acid biosynthesis, the possibility is discussed that at least part of the 24-hydroxycholesterol is converted into 7alpha-hydroxylated bile acids by the enzymes involved in the normal biosynthesis of bile acids.  相似文献   

18.
Lorbek G  Lewinska M  Rozman D 《The FEBS journal》2012,279(9):1516-1533
The present review describes the transgenic mouse models that have been designed to evaluate the functions of the cytochrome P450s involved in cholesterol and bile acid synthesis, as well as their link with disease. The knockout of cholesterogenic Cyp51 is embrionally lethal, with symptoms of Antley-Bixler syndrome occurring in mice, whereas the evidence for this association is conflicting in humans. Disruption of Cyp7a1 from classic bile acid synthesis in mice leads to either increased postnatal death or a milder phenotype with elevated serum cholesterol. The latter is similar to the case in humans, where CYP7A1 mutations associate with high plasma low-density lipoprotein and hepatic cholesterol content, as well as deficient bile acid excretion. Disruption of Cyp8b1 from an alternative bile acid pathway results in the absence of cholic acid and a reduced absorption of dietary lipids; however, the human CYP8B1 polymorphism fails to explain differences in bile acid composition. Unexpectedly, apparently normal Cyp27a1(-/-) mice still synthesize bile acids that originate from the compensatory pathway. In humans, CYP27A1 mutations cause cerebrotendinous xanthomatosis, suggesting that only mice can compensate for the loss of alternative bile acid synthesis. In line with this, Cyp7b1 knockouts are also apparently normal, whereas human CYP7B1 mutations lead to a congenital bile acid synthesis defect in children or spastic paraplegia in adults. Mouse knockouts of the brain-specific Cyp46a1 have reduced brain cholesterol excretion, whereas, in humans, CYP46A1 polymorphisms associate with cognitive impairment. At present, cytochrome P450 family 39 is poorly characterized. Despite important physiological differences between humans and mice, mouse models prove to be an invaluable tool for understanding the multifactorial facets of cholesterol and bile acid-related disorders.  相似文献   

19.
The conversion of cholesterol to bile acids is a key pathway for elimination of cholesterol from the body, thereby reducing the risk of arteriosclerosis. Moderate consumption of ethanol has been shown to have preventive effects on cardiovascular disease and decrease the risk of gallstone formation. In the present study primary human hepatocytes were used to investigate if ethanol affected bile acid synthesis. Hepatocytes were prepared from donor liver (n = 11) and treated with ethanol, 7.7 or 50 mM, for 24 h. mRNA levels for enzymes in bile acid synthesis pathways were studied and bile acid synthesis was analyzed. Treatment with 7.7 mM ethanol increased cholic acid synthesis by 20% and treatment with 50 mM ethanol up-regulated cholic acid formation by 60%. The synthesis of cholic acid increased more than that of chenodeoxycholic acid, indicating that the classical pathway for bile acid synthesis was up-regulated. Increased bile acid levels in the cells treated with ethanol were seen after approximately 20 h. mRNA expression of CYP7A1, CYP27A1, and CYP8B1 in the hepatocytes was not affected by alcohol exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号