首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李俪  王鑫  尹隽  钟江 《生物工程学报》2009,25(10):1558-1563
为了提高昆虫杆状病毒在哺乳动物细胞中转导基因的效率,构建了重组杆状病毒AcRed-tat和AcRed。两者都能在哺乳动物细胞内表达红色荧光蛋白作为报告基因。同时,AcRed-tat带有HIV-1Tat转导肽、病毒主要衣壳蛋白基因vp39及增强型绿色荧光蛋白(egfp)三者的融合基因,并由杆状病毒多角体启动子表达,能够在昆虫细胞中表达该Tat融合蛋白,并掺入子代病毒粒子。而AcRed作为相应的对照病毒,带有多角体启动子表达vp39和egfp的融合基因。2株病毒分别转导哺乳动物细胞后,利用流式细胞仪检测报告基因的表达水平,发现在CHO和Vero细胞中AcRed-Tat介导的报告基因表达水平明显高于AcRed,而在HEK293细胞中2株病毒介导的报告基因表达水平差异不显著。结果表明Tat转导肽可以提高杆状病毒对一部分哺乳动物细胞的转导效率,为改进杆状病毒-哺乳动物细胞转导载体提供了新的思路。  相似文献   

2.
The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.  相似文献   

3.
Baculovirus vectors have been shown to enter a variety of mammalian cell lines and gene transfer with wild-type baculovirus (WT) has been demonstrated both in vitro and in vivo. Different protein motifs have been displayed on the viral surface to serve as ligands for cell-specific receptor molecules. We have generated recombinant baculovirus vectors displaying an RGD-motif, recognized by alphaV integrin, on the viral surface. The RGD motifs within the C-terminus of coxsackie virus A9 and human parechovirus 1 VP1 proteins were fused to the N-terminus of the major envelope glycoprotein, gp64, of Autographa californica multiple nucleopolyhedrovirus. The recombinant RGD-presenting viruses bound more efficiently to the surface of human lung carcinoma cells (A549), known to contain alphaV integrins, as compared to WT baculovirus. In addition, the binding pattern of the RGD-displaying baculovirus showed extensive clustering. This most likely represents clustering of the integrin molecules on the cell surface, induced by binding of the RGD-displaying baculovirus. Finally, the transduction efficiency of an RGD-representing virus increased by almost three-fold as monitored by light emission measurements. In conclusion, these results suggest that the RGD-motif is functional on the surface of baculovirus and thereby these tropism-modified viruses bind more efficiently as well as enhance the transduction efficiency of human cancer cells expressing alphaV integrins.  相似文献   

4.
杆状病毒转导不同哺乳动物骨髓来源间充质干细胞   总被引:1,自引:0,他引:1  
Liu ZS  Zhang C  Lu XL  Li Y  Xu YF  Xiong F  Feng SW  Li L 《生理学报》2008,60(3):431-436
杆状病毒作为一种新型基因载体,若能有效转导不同哺乳动物骨髓来源间充质干细胞(bone marrow-derived mesenchymal stem cells, BMSCs),将会成为干细胞基因修饰研究领域中更理想的一种基因载体.本文探讨了重组杆状病毒(BacV-CMV-EGFP)对不同哺乳动物BMSCs的转导效率.体外原代培养小鼠、大鼠、猪、恒河猴及人的BMSCs.用培养3代以上的哺乳动物BMSCs进行病毒转导实验,转导2d后用倒置荧光显微镜观察绿色荧光蛋白在不同哺乳动物BMSCs中的表达,并用流式细胞仪检测重组杆状病毒对不同哺乳动物BMSCs的转导效率.结果显示:原代培养的小鼠、大鼠、猪、恒河猴及人的BMSCs于体外传代3次以上后,细胞呈现较均一的梭形,漩涡状生长;倒置荧光显微镜观察显示,与小鼠、大鼠、猪的BMSCs相比,恒河猴及人有更多BMSCs表达绿色荧光蛋白,且荧光强度较强;杆状病毒对小鼠、大鼠、猪、恒河猴及人的BMSCs的转导效率分别为(21.21±3.02)%、(22.51±4.48)%、(39.13±5.79)%、(71.16±5.36)%及(70.67±3.74)%.上述结果表明,重组杆状病毒对不同哺乳动物BMSCs的转导效率不同,对恒河猴及人的BMSCs转导效率较高,说明重组杆状病毒可作为人或灵长类动物BMSCs基因修饰研究领域中更理想的基因载体.  相似文献   

5.
In addition to serving as membrane anchors for cell surface proteins, glycosylphosphatidylinositols (GPIs) can be found abundantly as free glycolipids in mammalian cells. In this study we analyze the subcellular distribution and intracellular transport of metabolically radiolabeled GPIs in three different cell lines. We use a variety of membrane isolation techniques (subcellular fractionation, plasma membrane vesiculation to isolate pure plasma membrane fractions, and enveloped viruses to sample cellular membranes) to provide direct evidence that free GPIs are not confined to their site of synthesis, the endoplasmic reticulum, but can redistribute to populate other subcellular organelles. Over short labeling periods (2.5 h), radiolabeled GPIs were found at similar concentration in all subcellular fractions with the exception of a mitochondria-enriched fraction where GPI concentration was low. Pulse-chase experiments over extended chase periods showed that although the total amount of cellular radiolabeled GPIs decreased, the plasma membrane complement of labeled GPIs increased. GPIs at the plasma membrane were found to populate primarily the exoplasmic leaflet as detected using periodate oxidation of the cell surface. Transport of GPIs to the cell surface was inhibited by Brefeldin A and blocked at 15 degrees C, suggesting that GPIs are transported to the plasma membrane via a vesicular mechanism. The rate of transport of radiolabeled GPIs to the cell surface was found to be comparable with the rate of secretion of newly synthesized soluble proteins destined for the extracellular space.  相似文献   

6.
《MABS-AUSTIN》2013,5(5):508-518
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.  相似文献   

7.
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500-fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.Key words: antibody display, mammalian display, antibody library, vector, antibody screen, affinity maturation  相似文献   

8.
The insect baculovirus AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells, we show that entry is favoured by low pH and by increasing the available cell-surface area through a transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268–281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell-to-cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies, suggesting that additional factors also govern entry.  相似文献   

9.
Zhang Y  Lv Z  Chen J  Chen Q  Quan Y  Kong L  Zhang H  Li S  Zheng Q  Chen J  Nie Z  Wang J  Jin Y  Wu X 《Proteomics》2008,8(20):4178-4185
We have developed a novel baculovirus surface display (BVSD) system for the isolation of membrane proteins. We expressed a reporter gene that encoded hemagglutinin gene fused in frame with the signal peptide and transmembrane domain of the baculovirus gp64 protein, which is displayed on the surface of BmNPV virions. The expression of this fusion protein on the virion envelope allowed us to develop two methods for isolating membrane proteins. In the first method, we isolated proteins directly from the envelope of budding BmNPV virions. In the second method, we isolated proteins from cellular membranes that had disintegrated due to viral egress. We isolated 6756 proteins. Of these, 1883 have sequence similarities to membrane proteins and 1550 proteins are homologous to known membrane proteins. This study indicates that membrane proteins can be effectively isolated using our BVSD system. Using an analogous method, membrane proteins can be isolated from other eukaryotic organisms, including human beings, by employing a host cell-specific budding virus.  相似文献   

10.
TAT-mediated protein transduction into mammalian cells   总被引:39,自引:0,他引:39  
Manipulation of mammalian cells has been achieved by the transfection of expression vectors, microinjection, or diffusion of peptidyl mimetics. While these approaches have been somewhat successful, the classic manipulation methods are not easily regulated and can be laborious. One approach to circumvent these problems is the use of HIV TAT-mediated protein transduction. Although this technology was originally described in 1988, few improvements were reported in the subsequent 10 years. In the last few years, significant steps have been taken to advance this technology into a broadly applicable method that allows for the rapid introduction of full-length proteins into primary and transformed cells. The technology requires the synthesis of a fusion protein, linking the TAT transduction domain to the molecule of interest using a bacterial expression vector, followed by the purification of this fusion protein under either soluble or denaturing conditions. The purified fusion protein can be directly added to mammalian cell culture or injected in vivo into mice. Protein transduction occurs in a concentration-dependent manner, achieving maximum intracellular concentrations in less than 5 min, with nearly equal intracellular concentrations between all cells in the transduced population. Full-length TAT fusion proteins have been used to address a number of biological questions, relating to cell cycle progression, apoptosis, and cellular architecture. Described here are the fundamental requirements for the creation, isolation, and utilization of TAT-fusion proteins to affect mammalian cells. A detailed protocol for production and transduction of TAT-Cdc42 into primary cells is given to illustrate the technique.  相似文献   

11.
Determination of the baculovirus transducing titer in mammalian cells   总被引:1,自引:0,他引:1  
Baculovirus has emerged as a promising vector for in vivo or ex vivo gene therapy. To date, the infectious titer and multiplicity of infection (MOI) based on the ability of baculovirus to infect insect cells are commonly adopted to indicate the virus dosage. However, the infectious titer and MOI do not reliably represent the baculovirus transducing ability, making the comparison of baculovirus-mediated gene transfer difficult. To determine the baculovirus transducing ability more rapidly and reliably, we developed a protocol to evaluate the transducing titers of baculovirus stocks. The virus was diluted twofold serially and used to transduce HeLa cells. The resultant transduction efficiencies were measured by flow cytometry for the calculation of transducing titers. Compared to the infectious titer, the determination of transducing titer is more reproducible as the standard deviations among measurements are smaller. Also, the transducing titers can be obtained in 24 h, which is significantly faster as opposed to 4-7 days to obtain the infectious titer. More importantly, we demonstrated that baculoviruses with higher transducing titers could transduce cells at higher efficiency and yield stronger and longer transgene expression, confirming that the transducing titer was representative of the baculovirus transducing ability. This finding is particularly significant for ex vivo gene delivery whereby unconcentrated viruses are used for transduction and long-term transgene expression is desired. In this regard, our titration protocol provides a simple, fast, and reliable measure to evaluate the quality of virus stocks during virus production and purification, and is helpful to predict the performance of vector supernatants and ensure reproducible gene delivery experiments.  相似文献   

12.
The fragments of genomics DNA of the nuclear polyhedrosis virus (NPV) containing genes of late viral proteins p10, p35, p39, were cloned, the promoter regions of this genes were used to design baculovirus transfer vectors. A double-promoter and triple-promoter baculovirus transfer vectors were obtained. Recombinant baculovirus vectors containing mammalian expression cassette with cytomegalovirus (CMV) promoter, the gene for green or red fluorescent protein, SV40pA and polylinker MCS were constructed for the delivery of foreign genes into mammalian cells.  相似文献   

13.
To develop complementary baculovirus-based tools for gene delivery and display technologies, the interaction of occlusion-derived baculovirus (ODV) with human cells, and the functionality of the P74 ODV envelope protein for display of the IgG-binding Z domains (ZZP74) were evaluated. The cellular binding of ODV was concentration-dependent and saturable. Only minority of the bound virions were internalized at both 37 and 4 degrees C, suggesting usage of direct membrane fusion as the entry mode. The intracellular transport of ODV was confined in vesicular structures peripheral to the plasma membrane, impeding subsequent nuclear entry and transgene expression. Transduction of ODV was not rescued by mimicking the preferred alkaline environment and lowered temperature of the ODV infective entry, or following treatment with the microtubule depolymerizing agent nocodazole or with the histone deacetylase inhibitor sodium butyrate. Similar to unmodified P74, the ZZP74 chimera localized in the intranuclear ring zone, and was enriched in virus-induced microvesicles. However, Western blotting of ODV and budded virions (BV), as well as viral envelope and nucleocapsid fractions combined with functional infection/transduction studies revealed incorporation of the ZZP74 fusion protein into viral nucleocapsids. The ZZP74 BV preserved normal infectivity, polypeptide profile, and morphology, but became incapable of entering and transducing human cells.  相似文献   

14.
Recombinant baculoviruses have emerged as a new gene delivery vehicle for mammalian cells. Thus, a shuttle promoter that mediates gene expression in both insect and mammalian cells will facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle. This study described the generation of three recombinant baculoviruses with an EGFP reporter gene under the control of the white spot syndrome virus (WSSV) ie1 promoter, or either of two control promoters, the baculovirus early-to-late (ETL) promoter and polyhedrin promoter. The resulting recombinant baculoviruses were used to infect insect Sf9 cells and transduce several mammalian cell lines to test the expression of EGFP. We found that the WSSV ie1 promoter displayed a strong promoter activity in both insect and mammalian cells, and showed a stronger promoter activity than the ETL promoter in some mammalian cell lines. The activity of the WSSV ie1 promoter, but not the ETL promoter, can be enhanced by sodium butyrate, a histone deacetylase inhibitor. A transient plasmid transfection assay indicated that the WSSV ie1 promoter activity in mammalian cells is independent of baculovirus gene expression, differing from the ETL promoter, which was shown to be baculovirus-dependent. This study demonstrates, for the first time, that the WSSV ie1 promoter can function as a baculovirus-independent shuttle promoter between insect cells and mammalian cells. This novel shuttle promoter will facilitate the application of baculovirus-based vectors in gene expression, gene therapy, and non-replicative vector vaccines.  相似文献   

15.
Our group and others have recently demonstrated the ability of recombinant baculoviruses to transduce mammalian cells at high frequency. To further characterize the use of baculovirus as a mammalian gene delivery system, we examined the status of transduced DNA stably maintained in Chinese hamster ovary (CHO) cells. Four independent clones carrying two introduced markers, the genes for neomycin resistance (Neo) and green fluorescent protein (GFP), were selected. PCR analysis, Southern blotting, and DNA sequencing showed that discrete portions of the 148-kb baculovirus DNA were present as single-copy fragments ranging in size from 5 to 18 kb. Integration into the CHO cell genome was confirmed by fluorescent in situ hybridization (FISH) analysis. For one clone, the left and right viral/chromosomal junctions were determined by DNA sequencing of inverse PCR products. Similarly, for a different clone, the left viral/chromosomal junction was determined; however, the right junction sequence revealed the joining to another viral fragment by a short homology (microhomology), a hallmark of illegitimate recombination. The random viral breakpoints and the lack of homology between the virus and flanking chromosomal sequences are also suggestive of an illegitimate integration mechanism. To examine the long-term stability of reporter gene expression, all four clones were grown continuously for 36 passages in either the presence or absence of selection for Neo. Periodic assays over a 5-month period showed no loss of GFP expression for at least two of the clones. This report represents the first detailed analysis of baculovirus integrants within mammalian cells. The potential advantages of the baculovirus system for the stable integration of genetic material into mammalian genomes are discussed.  相似文献   

16.
The Cre recombinase of bacteriophage P1 is a powerful tool for artificial modification of genomic function in mammalian cells. To date, many researchers have studied the enzymatic biochemistry of Cre recombinase in loxP site-specific cleavage and rearrangement, as well as its use in gene technology. However, the intricate mechanisms of Cre-mediated recombination are still poorly understood. For example, more knowledge is needed in order to understand Cre recombinase's dependency on cell cycle, the necessity of other factors for recombination, and the exact nuclear environment that's required at the target locus, in order for recombination to take place in eukaryotic cells. In this study, we showed that P1 Cre-mediated recombination occurred frequently during S-phase of the cell cycle. HeLa cells were synchronized in cell cycle with the thymidine-hydroxyurea block method, and recombinant Cre proteins were fused with HIV-1 TAT protein transduction domains (PTD) in every phase of the cell cycle. Results showed that the transduction of PTD-Cre gave rise to genomic recombination preferentially during the S-phase of cell cycle. These findings will contribute significantly to the development of the Cre/loxP recombination system in vivo.  相似文献   

17.
《Molecular cell》2021,81(24):5099-5111.e8
  1. Download : Download high-res image (228KB)
  2. Download : Download full-size image
  相似文献   

18.
Mapping signal transduction pathways by phage display   总被引:18,自引:0,他引:18  
Rapid identification of proteins that interact with a novel gene product is an important element of functional genomics. Here we describe a phage display-based technique for interaction screening of complex cDNA libraries using proteins or synthetic peptides as baits. Starting with the epidermal growth factor receptor (EGFR) cytoplasmic tail, we identified known protein interactions that link EGFR to the Ras/MAP kinase signal transduction cascade and several novel interactions. This approach can be used as a rapid and efficient tool for elucidating protein networks and mapping intracellular signal transduction pathways.  相似文献   

19.
20.
A new set of eukaryotic expression vectors was constructed on the basis of baculoviruses. EcoRI fragments S, J, and P with the genes for late viral proteins p35 (polyhedrin), p39, and p10 were cloned from genomic DNA of the nuclear polyhedrosis virus. The promoter regions of these genes were used to construct double-and triple-promoter expression vectors. Baculovirus vectors containing an expression cassette with the cytomegalovirus promoter and the green fluorescent protein reporter gene were designed to express the cloned genes in cultured mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号