首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the shortest known protein with transforming activity. To identify the specific amino acids required for in vitro focus formation in mouse C127 cells, we used oligonucleotide-directed saturation mutagenesis to construct an extensive collection of mutants with missense mutations in the E5 gene. Characterization of mutants with amino acid substitutions in the hydrophobic middle third of the E5 protein indicated that efficient transformation requires a stretch of hydrophobic amino acids but not a specific amino acid sequence in this portion of the protein. Many amino acids in the carboxyl-terminal third of the protein can also undergo substitution without impairment of focus-forming activity, but the amino acids at seven positions, including two cysteine residues that mediate dimer formation, appear essential for efficient transforming activity. These essential amino acids are the most well conserved among related fibropapillomaviruses. The small size of the E5 protein, its lack of similarity to other transforming proteins, and its ability to tolerate many amino acid substitutions implies that it transforms cells via a novel mechanism.  相似文献   

2.
The 44-amino-acid E5 transforming protein of bovine papillomavirus can induce growth transformation of cultured rodent fibroblast cell lines. Previous studies revealed that efficient transformation of mouse C127 cells by the E5 protein required a central core of hydrophobic amino acids and several specific carboxyl-terminal amino acids. Although a randomly derived sequence of hydrophobic amino acids could functionally replace the wild-type hydrophobic core, most such sequences could not. We show here that the conserved glutamine at position 17 in the hydrophobic domain is also important for transformation and that insertion of the glutamine can rescue the transforming activity of many but not all otherwise defective mutants containing random hydrophobic sequences. However, a class of mutants was identified that transform efficiently even in the absence of glutamine, demonstrating that the presence of this amino acid is not absolutely required for efficient transformation. E5 proteins containing the glutamine appear to display increased homodimer formation compared with mutant proteins lacking the glutamine, but this amino acid has no apparent effect on protein stability.  相似文献   

3.
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.  相似文献   

4.
The 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids. A low level of hydrophilic amino acids was encoded at each of the randomized positions, including position 17, which is an essential glutamine in the wild-type E5 protein. Library proteins that induced transformation in mouse C127 cells stably bound and activated the PDGF beta receptor. Strikingly, 35% of the transforming clones had a hydrophilic amino acid at position 17, highlighting the importance of this position in activation of the PDGF beta receptor. Hydrophilic amino acids in other transforming proteins were found adjacent to position 17 or at position 14 or 21, which are in the E5 homodimer interface. Approximately 22% of the transforming proteins lacked hydrophilic amino acids. The hydrophilic amino acids in the transforming clones appear to be important for driving homodimerization, binding to the PDGF beta receptor, or both. Interestingly, several of the library proteins bound and activated PDGF beta receptor transmembrane mutants that were not activated by the wild-type E5 protein. These experiments identified transmembrane proteins that activate the PDGF beta receptor and revealed the importance of hydrophilic amino acids at specific positions in the transmembrane sequence. Our identification of transformation-competent transmembrane proteins with altered specificity suggests that this approach may allow the creation and identification of transmembrane proteins that modulate the activity of a variety of receptor tyrosine kinases.  相似文献   

5.
The 44-amino-acid E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. It is a highly hydrophobic polypeptide which dimerizes and localizes to the Golgi apparatus and endoplasmic reticulum membranes. Recent evidence suggests that E5 modulates the phosphorylation and internalization of the epidermal growth factor and colony-stimulating factor 1 receptors and constitutively activates platelet-derived growth factor receptors in C127 and FR3T3 cells. Although no direct interaction with these growth factor receptors has yet been identified, the E5 oncoprotein has been shown recently to interact with the hydrophobic 16-kDa component of the vacuolar H(+)-ATPase (16K protein) [D. J. Goldstein, M. E. Finbow, T. Andresson, P. McLean, K. Smith, V. Bubb, and R. Schlegel, Nature (London) 352:347-349, 1991]. In the current study, we have further analyzed the E5-16K protein complex by fast protein liquid chromatography and shown that each E5 dimer appears to bind two 16K proteins. In order to define the specific amino acid residues of E5 which participate in this binding, mutated E5 epitope fusion proteins were analyzed for their ability to coprecipitate 16K protein. Transformation-defective mutants containing amino acid substitutions within the short hydrophilic carboxyl-terminal domain retained the ability to associate with the 16K protein. However, E5 mutants lacking the glutamine residue in the hydrophobic domain were markedly inhibited in 16K protein binding. Most interestingly, the placement of a glutamine in several random hydrophobic sequences facilitated 16K protein binding, defining this residue as a potential binding site for the 16K protein component of the proton pump and exemplifying the critical role of hydrophilic amino acids for mediating specific interactions between transmembrane proteins.  相似文献   

6.
Early gene E5 of bovine papillomavirus type 1 encodes a 44-amino-acid protein whose expression can transform immortalized mouse cell lines. We have previously reported that a chemically synthesized E5 peptide functions to induce cellular DNA synthesis upon microinjection into growth-arrested mouse cells. We further defined the two E5 domains essential for the full DNA synthesis induction activity by the analysis of E5 deletion and amino acid substitution mutant peptides. The first domain is the C-terminal 13-amino-acid core which is sufficient to activate DNA synthesis at high peptide concentration and contains two essential, highly conserved cysteine residues. The second domain is the 7-amino-acid hydrophobic sequence contiguous to the core domain which is sufficient to confer a 1,000-fold higher molar specific activity to the E5 peptide. A random hydrophobic sequence, but not charged amino acids, fulfills the function of the second domain.  相似文献   

7.
The E5 oncoprotein of bovine papillomavirus type 1 is a 44 amino acid, highly hydrophobic protein that induces the stable transformation of immortalized murine fibroblasts, presumably through its activation of growth factor receptors. Previous studies have shown that the E5 protein complexes with the 16 kDa (16k) pore-forming protein of vacuolar H(+)-ATPases. This integral membrane protein is essential for the acidification and function of subcellular compartments that process growth factor receptors. Using an SV40 expression system in COS cells, we analyzed whether the E5-16k complexes bind additional cellular proteins, including growth factor receptors. These studies demonstrate that E5 binds to both the 16k protein and the PDGF receptor and that this tri-component complex can be isolated with antibodies specific for each protein. Importantly, the 16k protein bound to the PDGF receptor in the absence of E5, suggesting that E5 binds to the PDGF receptor via its interaction with the 16k protein. An E5 mutant lacking the hydrophilic carboxyl-terminal 14 amino acids retained binding to both 16k and the PDGF receptor, indicating that E5 binds to these proteins through its hydrophobic, membrane-associating domain. These studies reveal that hydrophobic, intramembrane interactions govern the association of E5, 16k and the PDGF receptor, suggesting a ligand-independent mechanism for receptor activation and a potential link between receptor signal transduction pathways and membrane pore activity.  相似文献   

8.
A point mutational analysis of human papillomavirus type 16 E7 protein.   总被引:44,自引:23,他引:21       下载免费PDF全文
The E7 open reading frame of human papillomavirus type 16 (HPV16) has been shown to be selectively retained in cervical tumors and to encode both transforming and trans-activating functions in murine cells, supporting the notion that expression of E7 contributes towards the progression of premalignant cervical lesions. A comparison among E7 sequences of different HPV types reveals some homology at the amino acid level. Of particular interest are two regions, one which contains significant homology to a region of adenovirus E1a and simian virus 40 large T (LT), and a second region which contains two conserved Cys-X-X-Cys motifs. To determine the importance of these domains to the function of the E7 protein, a series of mutants carrying substitutions at amino acids in the region of E1a-LT homology and at the Cys-X-X-Cys motifs were constructed. The mutated E7 sequences were placed under the control of a strong heterologous promoter (Moloney long terminal repeat), and the activity of the mutants was assayed in NIH 3T3 cells, a cell line in which both the transforming function and the trans-activating function of E7 could be determined. A single amino acid substitution analogous to a mutation in E1a which destroys the transforming ability of this protein abolished both transformation and trans-activation by E7. Mutations at the Cys-X-X-Cys motifs demonstrated that this region contributes to the transforming potential of E7, although proteins in which both motifs were interrupted retained a low level of transforming activity. Mutations in the region of E1a-LT homology which occur within a recognition sequence for casein kinase II did not markedly affect transforming activity of E7 but severely reduced trans-activating ability. This indicates that efficient trans-activation is not required for transformation by HPV16 E7 in these cells.  相似文献   

9.
S L Chen  T Z Tsai  C P Han    Y P Tsao 《Journal of virology》1996,70(6):3502-3508
In this study, we investigated the structural basis of human papillomavirus type 11 (HPV-11) E5a transforming activity at the amino acid level. The effects of insertion, deletion , and substitution mutations on teh E5a transforming activity were determined by the assay of anchorage-independent growth. In the conserved Cys-X-Cys structure, substitution of Ser for Cys-73 resulted in indistinguishable transforming activity, whereas substitution of Ser for Cys-75 or Ser for both Cys-73 and Cys-75 retained 50 and 42% transformation, respectively. This suggests that Cys at position 75 may be important for transformation. Charge and structural changes at teh COOH termini of several mutants impaired transformation significantly, but those at the middle region did so only mildly. In addition, the 16,000-molecular-weight pore-forming protein (16K protein) is known to associate with BPV-1, HPV-6, and HPV-16 E5 proteins. In this study, we investigated the correlation between E5a-16K binding affinity and the transforming activity of E5a by the use of 11 E5a mutants. Results show that E5a and these 11 E5a mutants could bind to the 16K protein when these proteins were coexpressed in COS cells, suggesting that simple binding of the 16K protein by E5a may not be sufficient for cell transformation.  相似文献   

10.
We have isolated a portion of the uridine diphosphate N-acetyl-D-glucosamine:dolichol phosphate N-acetyl-glucosamine-1-phosphate transferase gene (GTR2) from the genome of a tunicamycin-resistant clonal Chinese hamster ovary cell line, 3E11. The genomic fragment was selected by its hybridization to the yeast ALG-7 gene at low stringency. A 2.46-kilobase cDNA was isolated from a library prepared from 3E11 mRNA and probed with GTR2. The cDNA contained an open reading frame that encodes a protein of 408 amino acids with a molecular mass of 44.9 kDa. This protein was 43% identical in amino acid sequence to the protein of 448 amino acids encoded by the ALG-7 gene. The GTR2 gene fragment contained sequences for four exons coding for the carboxyl-terminal half of the protein. Transferase DNA sequences in 3E11 cells were 12-fold elevated over wild-type cells and 25-fold elevated when 3E11 cells were grown in the presence of tunicamycin. Transferase RNA levels in 3E11 cells were also elevated over wild-type levels but appeared unchanged by the presence of tunicamycin in the medium.  相似文献   

11.
Ponsin G  Qu SJ  Fan HZ  Pownall HJ 《Biochemistry》2003,42(15):4444-4451
Human plasma phospholipid transfer protein (PLTP) exchanges phospholipids between lipoproteins and remodels high-density lipoproteins (HDLs). We determined phospholipid transfer activity and HDL binding ability in wild-type PLTP and in 16 PLTP variants created by replacing 12 charged amino acids by site-directed mutagenesis. The data were analyzed in relation to the structure of a member of the same gene family, bactericidal/permeability-increasing protein, which is a boomerang-shaped molecule containing two symmetrical, hydrophobic pockets that bind phospholipid molecules. When expressed in COS-7 cells, wild-type and all mutant PLTPs accumulated intracellularly to nearly the same extent. Relative to wild-type PLTP, substitution(s) for amino acids with a lateral position totally exposed to the solvent produced reductions in transfer activity proportional to the reductions in the level of HDL binding. Variants containing substitutions for charged amino acids on the concave surface of PLTP did not affect binding to HDL or specific transfer activity. A mutation in the C-terminal pocket (E270R) led to a decrease in both the specific transfer activity and the level of binding to HDLs, whereas mutations in the N-terminal pocket (R25E and D231R) resulted in a large decrease in specific transfer activity without affecting HDL binding. The data support a model of transfer in which N- and C-terminal pockets have different roles in HDL binding and transfer activity. The N-terminal pocket may be critical to PLTP transfer activity but may have no involvement in binding to lipoproteins, whereas amino acid substitutions in the C-terminal pocket might reduce PLTP activity by decreasing PLTP's affinity for HDLs.  相似文献   

12.
The gene nfxB is one of the genes which affect the cell membrane permeability of quinolones in Pseudomonas aeruginosa PAO. Both wild-type nfxB and a mutant nfxB (nfx13E) were cloned and the DNA sequences were determined. The wild-type gene was dominant in PAO strains. The nfxB mutation was a point mutation (cytosine----guanine) which generates an amino acid exchange (arginine----glycine) in the putative nfxB product. The amino acid sequence of the wild-type NfxB protein revealed that it has a helix-turn-helix motif which may be responsible for the ability to bind in a sequence-specific manner to DNA. This finding indicated that the NfxB protein may regulate the expression of genes that are associated with cell permeability of drugs in P. aeruginosa. The position of the amino acid substitution between the NfxB protein and the Nfx13E protein was located within a possible DNA-binding domain, suggesting that the mutant protein (Nfx13E) may have lost DNA binding ability and regulator activity.  相似文献   

13.
The phosphorylation sites of myelin basic protein from bovine brain were determined after phosphorylation with Ca2+-calmodulin-dependent protein kinase. Four phosphorylated peptides were selectively and rapidly separated by reversed-phase high-performance liquid chromatography. Partial sequencing of the phosphorylated peptides by automated Edman degradation revealed that Ca2+-calmodulin-dependent protein kinase phosphorylated serine-16, serine-70, and threonine-95 specifically, as well as serine-115, which is located on the experimental allergic encephalitogenic determinant of the protein. Of the four amino acid sequences determined, two sequences surrounding phosphorylated amino acids, -Lys-Tyr-Leu-Ala-Ser(P)16-Ala- and -Arg-Phe-Ser(P)115-Trp-Gly-, have both sides of each phosphoserine residue occupied by hydrophobic amino acids, and a basic amino acid, arginine or lysine, is located at the position 2 or 4 residues amino-terminal to the phosphoserine residue. In contrast, the two other sequences surrounding phosphorylated amino acids, -Tyr-Gly-Ser(P)70-Leu-Pro-Glu-Lys- and -Ile-Val-Thr(P)95-Pro-Arg-, have a basic amino acid at the position 2 or 4 residues carboxyl-terminal to the phosphoamino acid residue.  相似文献   

14.
M Green  P M Loewenstein 《Cell》1987,51(5):795-802
Bovine papillomavirus type 1 contains the smallest known oncogene (ORF E5), encoding a hydrophobic 44 amino acid protein. To study the biochemical functions of the E5 oncoprotein, we have chemically synthesized it and several deletion mutant peptides. We demonstrate induction of cellular DNA synthesis in growth-arrested cells by microinjection of E5 oncoprotein. This activity can be broken down into two functionally distinguishable domains. Remarkably, the first domain, which alone is sufficient to induce cellular DNA synthesis, contains only the C-terminal 13 amino acids. This is the smallest known protein fragment that can autonomously activate cellular DNA synthesis. The second domain is the hydrophobic middle region, which by itself fails to induce cellular DNA synthesis but confers a 1000-fold increase in specific activity. The N-terminal one-third of the molecule is dispensable for induction of DNA synthesis.  相似文献   

15.
The gene that codes for the surface antigen of Plasmodium knowlesi sporozoites (CS protein) is unsplit and present in the genome in only one copy. The CS protein, as deduced from DNA sequence analysis of the structural gene, has an unusual structure with the central 40% of the polypeptide chain present as 12 tandemly repeated amino acid peptide units flanked by regions of highly charged amino acids. The protein has an amino-terminal hydrophobic amino acid signal sequence and a hydrophobic carboxy-terminal anchor sequence. The coding sequence of the gene has an AT content of 53%, compared with 70% AT in the 5′ and 3′ flanking sequences, and is contained entirely within an 11 kb Eco RI genomic DNA fragment. This genomic fragment expresses the CS protein in E. coli, indicating that the parasite promoter and ribosome binding site signals can be recognized in E. coli.  相似文献   

16.
The genes for the ribosomal 5S rRNA binding protein L5 have been cloned from three extremely thermophilic eubacteria, Thermus flavus, Thermus thermophilus HB8 and Thermus aquaticus (Jahn et al, submitted). Genes for protein L5 from the three Thermus strains display 95% G/C in third positions of codons. Amino acid sequences deduced from the DNA sequence were shown to be identical for T flavus and T thermophilus, although the corresponding DNA sequences differed by two T to C transitions in the T thermophilus gene. Protein L5 sequences from T flavus and T thermophilus are 95% homologous to L5 from T aquaticus and 56.5% homologous to the corresponding E coli sequence. The lowest degrees of homology were found between the T flavus/T thermophilus L5 proteins and those of yeast L16 (27.5%), Halobacterium marismortui (34.0%) and Methanococcus vannielii (36.6%). From sequence comparison it becomes clear that thermostability of Thermus L5 proteins is achieved by an increase in hydrophobic interactions and/or by restriction of steric flexibility due to the introduction of amino acids with branched aliphatic side chains such as leucine. Alignment of the nine protein sequences equivalent to Thermus L5 proteins led to identification of a conserved internal segment, rich in acidic amino acids, which shows homology to subsequences of E coli L18 and L25. The occurrence of conserved sequence elements in 5S rRNA binding proteins and ribosomal proteins in general is discussed in terms of evolution and function.  相似文献   

17.
Eukaryotic ribosomes contain an acidic ribosomal protein of about 38 kDa which shows immunological cross-reactivity with the 13 kDa-type acidic ribosomal proteins that are related to L7/L12 of bacterial ribosomes. By using a cDNA clone for 38 kDa-type acidic ribosomal protein A0 from the yeast Saccharomyces cerevisiae, we have cloned a genomic DNA encoding A0 and determined the sequence of 1,614 nucleotides including about 500 nucleotides in the 5'-flanking region. The gene lacks introns and possesses two boxes homologous to upstream activation sequences (UASrpg) in the 5'-flanking region. The amino acid sequence of A0 deduced from the nucleotide sequence shows that A0 shares a highly similar carboxyl-terminal region of about 40 amino acids in length with 13 kDa-type acidic ribosomal proteins, including an identical carboxyl-terminal, DDDMGFGLFD. In the amino-terminal region A0 contains an arginine-rich segment which shows a low but distinct similarity to that of bacterial ribosomal protein L10 through which L10 is thought to bind to 23S rRNA. On the other hand, the carboxyl-terminal half of A0 is enriched with hydrophobic amino acid residues including four pairs of phenylalanine residues which are all conserved in a human homologue.  相似文献   

18.
Propeptide of human protein C is necessary for gamma-carboxylation   总被引:7,自引:0,他引:7  
Protein C is one of a family of vitamin K dependent proteins, including blood coagulation factors and bone proteins, that contains gamma-carboxyglutamic acid. Sequence analysis of the cDNAs for these proteins has revealed the presence of a prepro leader sequence that contains a pre sequence or hydrophobic signal sequence and a propeptide containing a number of highly conserved amino acids. The pre region is removed from the growing polypeptide chain by signal peptidase, while the pro region is subsequently removed from the protein prior to secretion. In the present study, deletion mutants have been constructed in the propeptide region of the cDNA for human protein C, and the cDNAs were then expressed in mammalian cell culture. These deletions included the removal of 4, 9, 12, 15, 16, or 17 amino acids comprising the carboxyl end of the leader sequence of 42 amino acids. The mutant proteins were then examined by Western blotting, barium citrate adsorption and precipitation, amino acid sequence analysis, and biological activity and compared with the native protein present in normal plasma. These experiments have shown that protein C is readily synthesized in mammalian cell cultures, processed, and secreted as a two-chain molecule with biological activity. Furthermore, the pre portion or signal sequence in human protein C is 18 amino acids in length, and the pro portion of the leader sequence is 24 amino acids in length. Also, during biosynthesis and secretion, the amino-terminal region of the propeptide (residues from about -12 through -17) is important for gamma-carboxylation of protein C, while the present data and those of others indicate that the carboxyl-terminal portion of the propeptide (residues -1 through -4) is important for the removal of the pro leader sequence by proteolytic processing.  相似文献   

19.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.  相似文献   

20.
Authentic cDNAs encoding the activator protein for acid beta-glucosidase (EC3.2.1.45), co-beta-glucosidase, were cloned from the pCD and lambda gt11 human cDNA libraries. Initial screening with oligonucleotide mixtures encoding amino acid sequences of co-beta-glucosidase identified partial cDNAs which were used to obtain a potentially full-length cDNA from the lambda gt11 library. This clone (2767 bp), EGTISI, contained 5' (38 bp) and 3' (1157 bp) noncoding sequences, a translation initiation site, and an open reading frame encoding 524 amino acids which included a typical hydrophobic signal sequence (16 amino acids). Computer analyses identified three regions of high similarity to co-beta-glucosidase encoded by tandem sequences in EGTISI. Searches revealed that two of these regions encoded peptides of known function; SAP1 (sphingolipid activator protein 1) and protein C (a new sphingolipid activator protein) were encoded by EGTISI sequences 5' and 3', respectively, to those for co-beta-glucosidase. The third region of similarity, encoding a theoretical peptide (undefined function), was located most 5' in the cDNA. EGTISI and its encoded polypeptide had high similarity (77% nucleotide identity and about 80% amino acid similarity) to a rat Sertoli cell cDNA and its encoded sulfated glycoprotein-1. These results indicate that a single highly conserved gene encodes the precursor for four potential sphingolipid activator proteins in rat and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号