首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Porat Y  Mazor Y  Efrat S  Gazit E 《Biochemistry》2004,43(45):14454-14462
The formation of amyloid fibril is associated with major human diseases, including Alzheimer's disease, prion diseases, and type 2 diabetes. Methods for efficient inhibition of amyloid fibril formation are therefore highly clinically important. A principal approach for the inhibition of amyloid formation is based on the use of modified molecular recognition elements. Here, we demonstrate efficient inhibition of amyloid formation of the type 2 diabetes-related human islet amyloid polypeptide (hIAPP) by a modified aromatic peptide fragment and a small aromatic polyphenol molecule. A molecular recognition assay using peptide array analysis suggested that molecular recognition between hIAPP and its core amyloidogenic module is mediated by aromatic rather than hydrophobic interactions. To study the possible effect of aromatic interactions on inhibition of hIAPP fibril formation, we have used peptide and small molecule inhibitors. The addition of a nonamyloidogenic peptide analogue of the core module NFGAILSS, in which phenylalanine was substituted with tyrosine (NYGAILSS), resulted in substantial inhibition of fibril formation by hIAPP. The inhibition was significantly stronger than the one achieved using a beta-sheet breaker-conjugated peptide NFGAILPP. On the basis of the molecular arrangement of the tyrosine-phenylalanine interaction, we suggest that the inhibition stems from the geometrical constrains of the heteroaromatic benzene-phenol interaction. In line with this notion, we demonstrate remarkable inhibition of hIAPP fibril formation and cytotoxicity toward pancreatic beta-cells by a small polyphenol molecule, the nontoxic phenol red compound. Taken together, our results provide further experimental support for the potential role of aromatic interactions in amyloid formation and establish a novel approach for its inhibition.  相似文献   

2.
Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. There is a great deal of interest in developing small molecule inhibitors of the amyloidogenic processes. In the present article, the inhibitory effects of some indole derivatives on amyloid fibrillation of hen egg white lysozyme (HEWL) are reported. Acidic pH and high temperatures were used to drive HEWL towards amyloid formation. A variety of techniques, ranging from thioflavin T fluorescence and Congo red absorbance assays to far-UV CD and transmission electron microscopy, were employed to characterize the HEWL fibrillation process. Among the indole derivatives tested, indole 3-acetic acid, indole 3-carbinol and tryptophol had the most inhibitory effects on amyloid formation, indole and indole 3-propionic acid gave some inhibition, and indole aldehyde and tryptophan showed no significant inhibition. Although indoles did not protect the HEWL native state from conformational changes, they were effective in diminishing HEWL amyloid fibril formation, delaying both the nucleation and elongation phases. Disaggregation of previously formed HEWL amyloid fibrils was also enhanced by indole 3-acetic acid. Various medium conditions, such as the presence of different anions and alcoholic cosolvents, were explored to gain an insight into possible mechanisms. These observations, taken together, suggest that the indole ring is likely to play the main role in inhibition and that the side chain hydroxyl group may contribute positively, in contrast to the side chain carbonyl and intervening methylene groups.  相似文献   

3.
《朊病毒》2013,7(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7-10 nm are being observed. In spite of the great clinical important of amyloid-associated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β-breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.  相似文献   

4.
Ehud Gazit 《朊病毒》2007,1(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7–10 nm are being observed. In spite of the great clinical important of amyloidassociated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.Key Words: Alzheimer''s disease, amyloid disease, molecular recognition, nanostructures, protein aggregation, protein misfolding, self-assembly, type II diabetes  相似文献   

5.
Gazit E 《The FEBS journal》2005,272(23):5971-5978
The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several micro-organisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.  相似文献   

6.
Amyloid formation is associated with several human diseases including Alzheimer's disease (AD), Parkinson's disease, Type 2 Diabetes, and so forth, no disease modifying therapeutics are available for them. Because of the structural similarities between the amyloid species characterizing these diseases, (despite the lack of amino acid homology) it is believed that there might be a common mechanism of toxicity for these conditions. Thus, inhibition of amyloid formation could be a promising disease-modifying therapeutic strategy for them. Aromatic residues have been identified as crucial in formation and stabilization of amyloid structures. This finding was corroborated by high-resolution structural studies, theoretical analysis, and molecular dynamics simulations. Amongst the aromatic entities, tryptophan was found to possess the most amyloidogenic potential. We therefore postulate that targeting aromatic recognition interfaces by tryptophan could be a useful approach for inhibiting the formation of amyloids. Quinones are known as inhibitors of cellular metabolic pathways, to have anti- cancer, anti-viral and anti-bacterial properties and were shown to inhibit aggregation of several amyloidogenic proteins in vitro. We have previously described two quinone-tryptophan hybrids which are capable of inhibiting amyloid-beta, the protein associated with AD pathology, both in vitro and in vivo. Here we tested their generic properties and their ability to inhibit other amyloidogenic proteins including α-synuclein, islet amyloid polypeptide, lysozyme, calcitonin, and insulin. Both compounds showed efficient inhibition of all five proteins examined both by ThT fluorescence analysis and by electron microscope imaging. If verified in vivo, these small molecules could serve as leads for developing generic anti-amyloid drugs.  相似文献   

7.
Deposition of aggregated amyloid beta-protein (Abeta), a proteolytic cleavage product of the amyloid precursor protein (Abeta ), is a critical step in the development of Alzheimer's disease(Abeta++). However, we are far from understanding the molecular mechanisms underlying the initiation of Abeta polymerization in vivo. Here, we report that a seeding Abeta, which catalyzes the fibrillogenesis of soluble Abeta, is generated from the apically missorted amyloid precursor protein in cultured epithelial cells. Furthermore, the generation of this Abeta depends exclusively on the presence of cholesterol in the cells. Taken together with mass spectrometric analysis of this novel Abeta and our recent study (3), it is suggested that a conformationally altered form of Abeta, which acts as a "seed" for amyloid fibril formation, is generated in intracellular cholesterol-rich microdomains.  相似文献   

8.
More than 16 different proteins have been identified as amyloid in clinical diseases; among these, beta-amyloid (Abeta) of Alzheimer's disease is the best characterized. In the present study, we performed experiments with Abeta and calcitonin, another amyloid-forming peptide, to examine the role of G protein activation in amyloid toxicity. We demonstrated that the peptides, when prepared under conditions that promoted beta-sheet and amyloid fibril (or protofibril) formation, increased high affinity GTPase activity, but the nonamyloidogenic peptides had no discernible effects on GTP hydrolysis. These increases in GTPase activity were correlated to toxicity. In addition, G protein inhibitors significantly reduced the toxic effects of the amyloidogenic Abeta and calcitonin peptides. Our results further indicated that the amyloidogenic peptides significantly increased GTPase activity of purified Galpha(o) and Galpha(i) subunits and that the effect was not receptor-mediated. Collectively, these results imply that the amyloidogenic structure, regardless of the actual peptide or protein sequence, may be sufficient to cause toxicity and that toxicity is mediated, at least partially, through G protein activation. Our abilities to manipulate G protein activity may lead to novel treatments for Alzheimer's disease and the other amyloidoses.  相似文献   

9.
The development of type II diabetes was shown to be associated with the formation of amyloid fibrils consisted of the islet amyloid polypeptide (IAPP or amylin). Recently, a short functional hexapeptide fragment of IAPP (NH(2)-NFGAIL-COOH) was found to form fibrils that are very similar to those formed by the full-length polypeptide. To better understand the specific role of the residues that compose the fragment, we performed a systematic alanine scan of the IAPP "basic amyloidogenic units." Turbidity assay experiments demonstrated that the wild-type peptide and the Asn(1) --> Ala and Gly(3) --> Ala peptides had the highest rate of aggregate formation, whereas the Phe(2) --> Ala peptide did not form any detectable aggregates. Dynamic light-scattering experiments demonstrated that all peptides except the Phe(2) --> Ala form large multimeric structures. Electron microscopy and Congo red staining confirmed that the structures formed by the various peptides are indeed amyloid fibrils. Taken together, the results of our study provide clear experimental evidence for the key role of phenylalanine residue in amyloid formation by IAPP. In contrast, glycine, a residue that was suggested to facilitate amyloid formation in other systems, has only a minor role, if any, in this case. Our results are discussed in the context of the remarkable occurrence of aromatic residues in short functional fragments and potent inhibitors of amyloid-related polypeptides. We hypothesize that pi-pi interactions may play a significant role in the molecular recognition and self-assembly processes that lead to amyloid formation.  相似文献   

10.
Major constituents of the amyloid plaques found in the brain of Alzheimer's patients are the 39-43 residue beta-amyloid (Abeta) peptides. Extensive in vitro as well as in vivo biochemical studies have shown that the 40- and 42-residue Abeta peptides play major roles in the neurodegenerative pathology of Alzheimer's disease. Although the two Abeta peptides share common aggregation properties, the 42-residue peptide is more amyloidogenic and more strongly associated with amyloid pathology. Thus, characterizations of the two Abeta peptides are of critical importance in understanding the molecular mechanism of Abeta amyloid formation. In this report, we present combined CD and NMR studies of the monomeric states of the two peptides under both non-amyloidogenic (<5 degrees C) and amyloid-forming conditions (>5 degrees C) at physiological pH. Our CD studies of the Abeta peptides showed that initially unfolded Abeta peptides at low temperature (<5 degrees C) gradually underwent conformational changes to more beta-sheet-like monomeric intermediate states at stronger amyloidogenic conditions (higher temperatures). Detailed residue-specific information on the structural transition was obtained by using NMR spectroscopy. Residues in the N-terminal (3-12) and 20-22 regions underwent conformational changes to more extended structures at the stronger amyloidogenic conditions. Almost identical structural transitions of those residues were observed in the two Abeta peptides, suggesting a similar amyloidogenic intermediate for the two peptides. The 42-residue Abeta (1-42) peptide was, however, more significantly structured at the C-terminal region (39-42), which may lead to the different aggregation propensity of the two peptides.  相似文献   

11.
Liu D  Xu Y  Feng Y  Liu H  Shen X  Chen K  Ma J  Jiang H 《Biochemistry》2006,45(36):10963-10972
Abeta peptides cleaved from the amyloid precursor protein are the main components of senile plaques in Alzheimer's disease. Abeta peptides adopt a conformation mixture of random coil, beta-sheet, and alpha-helix in solution, which makes it difficult to design inhibitors based on the 3D structures of Abeta peptides. By targeting the C-terminal beta-sheet region of an Abeta intermediate structure extracted from molecular dynamics simulations of Abeta conformational transition, a new inhibitor that abolishes Abeta fibrillation was discovered using virtual screening in conjunction with thioflavin T fluorescence assay and atomic force microscopy determination. Circular dichroism spectroscopy demonstrated that the binding of the inhibitor increased the beta-sheet content of Abeta peptides either by stabilizing the C-terminal beta-sheet conformation or by inducing the intermolecular beta-sheet formation. It was proposed that the inhibitor prevented fibrillation by blocking interstrand hydrogen bond formation of the pleated beta-sheet structure commonly found in amyloid fibrils. The study not only provided a strategy for inhibitor design based on the flexible structures of amyloid peptides but also revealed some clues to understanding the molecular events involved in Abeta aggregation.  相似文献   

12.
Carbohydrate recognition by amyloid P component from human serum has been investigated by binding experiments using several glycosaminoglycans, polysaccharides and a series of structurally defined neoglycolipids and natural glycolipids. Two novel classes of carbohydrate ligands have been identified. The first is 6-phosphorylated mannose as found on lysosomal hydrolases, and the second is the 3-sulphated saccharides galactose, N-acetyl-galactosamine and glucuronic acid as found on sulphatide and other acidic glycolipids that occur in neural or kidney tissues or on subpopulations of lymphocytes. Binding to mannose-6-phosphate containing molecules and inhibition of binding by free mannose-6-phosphate and fructose-1-phosphate are features shared with mannose-6-phosphate receptors involved in trafficking of lysosomal enzymes. However, only amyloid P binding is inhibited by galactose-6-phosphate, mannose-1-phosphate and glucose-6-phosphate. These findings strengthen the possibility that amyloid P protein has a central role in amyloidogenic processes: first in formation of focal concentrations of lysosomal enzymes including proteases that generate fibril-forming peptides from amyloidogenic proteins, and second in formation of multicomponent complexes that include sulphoglycolipids as well as glycosaminoglycans. The evidence that binding to all of the acidic ligands involves the same polypeptide domain on amyloid P protein, and inhibition data using diffusible, phosphorylated monosaccharides, is potentially important leads to novel drug designs aimed at preventing or even reversing amyloid deposition processes without interference with essential lysosomal trafficking pathways.  相似文献   

13.
Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Abeta 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure.  相似文献   

14.
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.  相似文献   

15.
Beta-amyloid peptides (Abeta) are the main protein components of neuritic plaques and are important in the pathogenesis of Alzheimer's disease. It is reported that Abeta itself is not toxic; however, it becomes toxic to neuronal cells once it has aggregated into amyloid fibrils by peptide-peptide interactions. In this study, to specify the molecular mechanism of aggregation, a novel fluorescence assay was designed. For this purpose, possible partial peptides (38 types of 5-mer) were synthesized on solid-phase. The molecular interactions were examined by a fluorescence probe possessing Lys-Leu-Val-Phe-Phe (KLVFF) as a molecular recognition site. KLVFF is known to be a minimum sequence for formation of the Abeta aggregate. A specific interaction was observed between labeled and immobilized KLVFF. It suggests that the aggregation of Abeta was controlled by the recognition of KLVFF itself by hydrophobic and electrostatic interactions.  相似文献   

16.
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases.  相似文献   

17.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

18.
Certain non-steroidal anti-inflammatory drugs (NSAIDs) preferentially inhibit production of the amyloidogenic Abeta42 peptide, presumably by direct modulation of gamma-secretase activity. A recent report indicated that NSAIDs could reduce Abeta42 by inhibition of the small GTPase Rho, and a single inhibitor of Rho kinase (ROCK) mimicked the effects of Abeta42-lowering NSAIDs. To investigate whether Abeta42 reduction is a common property of ROCK inhibitors, we tested commercially available compounds in cell lines that were previously used to demonstrate the Abeta42-lowering activity of NSAIDs. Surprisingly, we found that two ROCK inhibitors reduced total Abeta secretion in a dose-dependent manner but showed no selectivity for Abeta42. In addition, ROCK inhibitors did not increase Abeta38 secretion in cell-based assays or reduce Abeta production in gamma-secretase in vitro assays, which are critical characteristics of Abeta42-lowering NSAIDs. The reduction in total Abeta levels by ROCK inhibitors was not accompanied by overall-changes in amyloid precursor protein processing. Targeting ROCK by expression of dominant-negative or constitutively active ROCK mutants failed to modulate Abeta secretion, indicating that ROCK inhibition may either be redundant or insufficient for Abeta reduction by ROCK inhibitors. Taken together, these results seem to exclude a mechanistic involvement of ROCK in the Abeta42-lowering activity of NSAIDs.  相似文献   

19.
Acetylcholinesterase is an enzyme associated with senile plaques. Biochemical studies have indicated that acetylcholinesterase induces amyloid fibril formation by interaction throughout the peripherical anionic site of the enzyme forming highly toxic acetylcholinesterase-amyloid-beta peptide (Abeta) complexes. The pro-aggregating acetylcholinesterase effect is associated with the intrinsic amyloidogenic properties of the corresponding Abeta peptide. The neurotoxicity induced by acetylcholinesterase-Abeta complexes is higher than the that induced by the Abeta peptide alone, both in vitro and in vivo. The fact that acetylcholinesterase accelerates amyloid formation and the effect is sensitive to peripherical anionic site blockers of the enzyme, suggests that specific and new acetylcholinesterase inhibitors may well provide an attractive possibility for treating Alzheimer's disease. Recent studies also indicate that acetylcholinesterase induces the aggregation of prion protein with a similar dependence on the peripherical anionic site.  相似文献   

20.
The progressive cerebral deposition of a 40-42 residues amyloid beta-peptide (Abeta) is regarded as a major factor in the onset of the Alzheimer's disease. It has recently been shown that Abeta(1-40) is cleaved by Escherichia coli pitrilysin, a homologue of insulysin, at a specific site. To facilitate the studies on a recognition mechanism of Abeta by pitrilysin, an overproduction system of Abeta(1-40) as a fusion protein with E. coli RNase HI was constructed. This fusion protein was designed such that an Abeta(1-40) derivative, Abeta(1-40)*, in which Lys16 and Lys28 of Abeta(1-40) are simultaneously replaced by Ala, is attached to the C-terminus of E. coli RNase HI and Abeta(1-40)* is separated from RNase HI upon cleavage with lysyl endopeptidase. The fusion protein was overproduced in E. coli in inclusion bodies, solubilized and purified in the presence of guanidine hydrochloride, and cleaved by lysyl endopeptidase. Abeta(1-40)* was purified from the resultant peptide fragments by reverse-phase HPLC. Measurement of the far-UV CD spectra suggests that Abeta(1-40)* is conformationally similar to Abeta(1-40). However, the thioflavin T binding assay suggests that Abeta(1-40)* is more amyloidogenic than Abeta(1-40). Nevertheless, Abeta(1-40)* was cleaved by pitrilysin at the site identical to that in Abeta(1-40).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号