首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular chaperon produced by an intracellular symbiont.   总被引:6,自引:0,他引:6  
Symbionin, that is selectively produced by an intracellular symbiont harbored by the aphid bacteriocyte, is structurally homologous to the Escherichia coli groEL protein, a heat shock protein functioning as a molecular chaperon. It was shown that symbionin has ATPase activity and, in the presence of Mg-ATP, is converted into lower molecular mass species. Like the groEL protein, symbionin was able to reconstitute dimeric ribulose 1,5-bisphosphate carboxylase/oxygenase holoenzyme from its unfolded subunits in vitro, suggesting that this protein functions as a molecular chaperon in the endosymbiont. The groES-homologous protein did exist in the endosymbiont, but its amount was small relative to that of symbionin.  相似文献   

2.
An intracellular symbiont harbored by the aphid bacteriocyte, a specialized fat body cell, synthesizes in vivo substantially only one protein, symbionin, which is a member of the chaperonin-60 family of molecular chaperones. Nucleotide sequence determination of the symbionin region of the endosymbiont genome revealed that it contains the two-cistron operon sym. Just like the Escherichia coli groE operon, the sym operon was dually led by a heat shock and an ordinary promoter sequence. According to the nucleotide sequence, symbionin was 85.5% identical to GroEL of E. coli at the amino acid sequence level. SymS, another protein encoded in the sym operon, which is a member of chaperonin-10, was 79.6% identical to GroES. Complementation experiments with E. coli groE mutants showed that the chaperonin-10 and chaperonin-60 genes from the endosymbiont are expressed in E. coli and that they can function as molecular chaperones together with endogenous GroEL and GroES, respectively.  相似文献   

3.
H Ishikawa  M Yamaji 《Bio Systems》1985,17(4):327-335
An aphid endosymbiont in vivo synthesizes symbionin almost exclusively which is not produced in vitro by the same symbiont. While symbionin produced by the endosymbiont of the pea aphid is an acidic protein with a molecular weight of 63,000, that by the symbiont of the kondo aphid, the closest relative to the former, is a distinct, less acidic, molecule. While the two endosymbionts in vivo in old insects synthesize about 11 protein species in common, they produce many different proteins when incubated extracellularly.  相似文献   

4.
Abiotic and biotic host-plant stress, such as desiccation and herbivory, may strongly affect sap-sucking insects such as aphids via changes in plant chemicals of insect nutritional or plant defensive value. Here, we examined (i) water deprivation and (ii) defoliation by the beetle Leptinotarsa decemlineata as stresses indirectly affecting the aphid Macrosiphum euphorbiae via its host plant Solanum tuberosum. For plant-induced stress, aphids were reared on healthy vs. continuously stressed potato for 14 days (no watering; defoliation maintained at approximately 40%). Aphid performance under stress was correlated with metabolic responses monitored by profiling of the aphid proteome. M. euphorbiae was strongly affected by water stress, as adult survival, total aphid number and biomass were reduced by 67%, 64%, and 79%, respectively. Aphids performed normally on defoliated potato, indicating that they were unaffected or able to compensate any stress induced by plant defoliation. Stressed aphid proteomes revealed 419-453 protein spots, including 27 that were modulated specifically or jointly under each kind of host-plant stress. Reduced aphid fitness on water-stressed plants mostly correlated with modulation of proteins involved in energy metabolism, apparently to conserve energy in order to prioritize survival. Despite normal performance, several aphid proteins that are known to be implicated in cell communication were modulated on defoliated plants, possibly suggesting modified aphid behaviour. The GroEL protein (or symbionin) of the endosymbiont Buchnera aphidicola was predominant under all conditions in M. euphorbiae. Its expression level was not significantly affected by aphid host-plant stresses, which is consistent with the high priority of symbiosis in stressed aphids.  相似文献   

5.
《Insect Biochemistry》1986,16(2):299-306
Electron microscopic observations demonstrated that the male of the kondo aphid, A. kondoi harbors intracellular symbionts different in shape from those in the viviparous female. Two-dimensional gel electrophoresis indicated that the endosymbiont in the male is less active in synthesizing symbionin, an aphid endosymbiont-specific protein than that in the viviparous female. Symbionin was also found in the winter egg though it was much less in amount than proteins related to the yolk formation. In the fundatrix which hatches out of the fertilized winter egg, symbionin was the most abundant protein.  相似文献   

6.
Aphid endosymbionts in vivo in young hosts synthesized almost exclusively only one protein, symbionin. The synthesis of symbionin declined with age of the host and instead the endosymbiont began to express some of its own genes which were expressed in vitro but were repressed in vivo in young host. A prolonged treatment of young host with cycloheximide brought about a physiological state similar to that in old insect. Though in the very old insect symbionin was no longer produced by its endosymbiont, the host seemed to depend almost entirely upon the gene products of the endosymbiont.  相似文献   

7.
Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.  相似文献   

8.
《Insect Biochemistry》1990,20(4):429-436
Anti-symbionin antiserum was obtained by injecting symbionin purified from pea aphids into a rabbit. On immunoblotting, in addition to symbionin many smaller proteins cross-reacted with the antiserum suggesting that symbionin in the aphid tissue is prone to degradation. When estimated by immunoblotting with anti-symbionin antiserum, the symbionin content per unit wet weight of both symbiotic and aposymbiotic aphids was shown to decrease with age. Five distinct aphid species were shown to share a protein class related to symbionin in terms of molecular mass and immunogenicity. Immuno-histochemistry of aphid tissues with anti-symbionin antiserum indicated that symbionin is localized exclusively within the mycetocyte harboring the primary symbionts.  相似文献   

9.
《Insect Biochemistry》1985,15(2):155-163
Pea aphids, Acyrthosiphon pisum, injected with rifampicin gave birth to extremely undersized insects (RF-insects). RF-insects born later were significantly smaller in size than those born earlier by the same parents both at birth and 20 days later. RF-insects never produced progeny. Upon separation of the proteins from 20 days RF-insects, it was demonstrated that these insects neither contained nor synthesized symbionin, a protein synthesized by the endosymbiont of the aphid. Gel electrophoresis of RNA from RF-insects suggested that no ribosomal RNA species of the endosymbiont was present. Based on these results, it was concluded that RF-insects do not contain the endosymbiont.  相似文献   

10.
《FEBS letters》1987,215(2):295-299
A sudden increase in the growth temperature of Methylophilus methylotrophus results in the synthesis of a number of unique proteins. The major heat-shock proteins have apparent molecular masses of 83, 78, 63, 60, 16 and 14 kDa. Other stress conditions elicit a similar response, although there are significant differences in the sets of proteins produced under the various conditions. Addition of methanol induces proteins identical in size to the heat-shock 83, 79, 63 and 14 kDa proteins and also induces unique 94, 36 and 29 kDa species. Addition of ethanol induces proteins identical in size to the 78 and 20 kDa heat-shock proteins and the 94 and 36 kDa methanol-induced proteins and an apparently unique 13 kDa species. Simultaneous exposure to elevated temperature and either methanol or ethanol resulted in the synthesis of all of the proteins induced by the separate treatments. The stress-shock proteins are differentially located in cytoplasmic, periplasmic and membrane fractions.  相似文献   

11.
12.
Previously it was found that the expression of selected heat-shock proteins is upregulated in corals after exposure to elevated temperature. We published that HSPs are suitable markers in sponges to monitor the degree of environmental stress on these animals. In the present study the heat-shock proteins (HSPs) with a molecular weight of 90 kDa have been selected to prove their potential usefulness as biomarkers under controlled laboratory conditions and in the field. The studies have been performed with the octocoral Dendronephthya klunzingeri4.5-fold higher steady-state level of the respective mRNA. Also animals taken from stressed locations in the field showed an increased expression. The amount of HSP90 protein in D. klunzingeri was found to be strongly increased under thermal stress, or exposure to polychlorinated biphenyl (congener 118), but not after treatment with cadmium. Field studies revealed that samples taken from a nonstressed area have a low level of HSP90, but those collected from locations at which the corals are under physical stress (sedimentation through landfilling) show a high expression of HSP90. It is concluded that the chaperone HSP90 might become a suitable biomarker to monitor environmental stress on corals.  相似文献   

13.
Leukemia inhibitory factor/D-factor, a potent differentiation-inducing glycoprotein for murine myelomonocytic leukemic M1 cells, rapidly stimulated the phosphorylation of a 27 kDa protein with an isoelectric point of 5.6 in a LIF-sensitive M1-T22 cell line but not in a LIF-resistant M1-D(-) cell line. The increase in phosphorylation was detectable 5 min after LIF treatment and was maximal at 10 min. Heat shock treatment at 44.5 degrees C for 30 min also induced the phosphorylation of the same 27 kDa protein. Although this 27 kDa protein did not become labeled with [35S]-methionine, metabolic labeling experiments using [35S]-cysteine or [3H]-leucine clearly demonstrated that the synthesis of this protein was enhanced after heat shock. These results suggest that the phosphorylated 27 kDa protein is a low molecular weight stress protein and that the protein may play a role at an early stage in the LIF signaling pathway probably linked to macrophagic differentiation.  相似文献   

14.
Abstract The protein synthesis pattern was investigated in Bacillus subtilis relA + and relA after heat shock using the highly sensitive 2-dimensional O'Farrell technique [1]. The synthesis of several proteins is markedly enhanced upon temperature shift-up in both strains. At 52°C the growth rate is drastically diminished because the synthesis of cellular proteins is inhibited. However, the production of heat-shock proteins is maintained. The synthesis of some of these presumptive heat-shock proteins is stimulated at 37°C in cells treated with H2O2 as well as with norvaline, which induces a guanosine tetraphosphate (ppGpp)-dependent stringent response.  相似文献   

15.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

16.
Cotton leaf curl virus (CLCuV) (Gemininiviridae: Begomovirus) is the causative agent of leaf curl disease in cotton plants (Gossypium hirsutum). CLCuV is exclusively transmitted by the whitefly species B. tabaci (Gennadius) (Hemiptera: Alerodidae). B. tabaci contains several biotypes which harbor dissimilar bacterial endo-symbiotic community. It is reported that these bacterial endosymbionts produce a 63 kDa chaperon GroEL protein which binds to geminivirus particles and protects them from rapid degradation in gut and haemolymph. In biotype B, GroEL protein of Hamiltonella has been shown to interact with Tomato yellow leaf curl virus (TYLCV). The present study was initiated to find out whether endosymbionts of B. tabaci are similarly involved in CLCuV transmission in Sriganganagar (Rajasthan), an area endemic with cotton leaf curl disease. Biotype and endosymbiont diversity of B. tabaci were identified using MtCO1 and 16S rDNA genes respectively. Analysis of our results indicated that the collected B. tabaci population belong to AsiaII genetic group and harbor the primary endosymbiont Portiera and the secondary endosymbiont Arsenophonus. The GroEL proteins of Portiera and Arsenophonus were purified and in-vitro interaction studies were carried out using pull down and co-immunoprecipitation assays. In-vivo interaction was confirmed using yeast two hybrid system. In both in-vitro and in-vivo studies, the GroEL protein of Arsenophonus was found to be interacting with the CLCuV coat protein. Further, we also localized the presence of Arsenophonus in the salivary glands and the midgut of B. tabaci besides the already reported bacteriocytes. These results suggest the involvement of Arsenophonus in the transmission of CLCuV in AsiaII genetic group of B. tabaci.  相似文献   

17.
Various conditions which decrease translational capacity and enhance the synthesis of ribosomal components were analysed with respect to the synthesis of heat-shock proteins in Escherichia coli: (a) deprivation of streptomycin from a streptomycin-dependent mutant, (b) addition of tetracycline to a partially tetracycline-resistant strain, and (c) nutritional shift-up conditions. In all cases, the rate of synthesis of the heat-shock proteins DnaK, GroEL and C62.5 decreased while the synthesis of ribosomal components increased. Thus inhibition of ribosome formation or a decrease in translational capacity do not induce the stress proteins, but have the opposite effect.  相似文献   

18.
Differential cDNA display and quantitative RT-PCR revealed that mRNA of host S-adenosylmethionine decarboxylase (SAMDC) was abundant only in the aphid endosymbiotic system well organized in young hosts, suggesting that SAMDC plays some important roles in the system. SAMDC is a key enzyme to synthesize polyamines that are known to be involved in a large array of biological events including protein synthesis, DNA stabilization, DNA replication, and cell proliferation. As the first step to investigate roles of polyamines in the endosymbiotic system, polyamine composition in bacteriocytes was determined by high performance liquid chromatography. As a result, we found that bacteriocytes contained virtually an only single polyamine, spermidine. The spermidine content of bacteriocytes fluctuated with time in the course of development and aging of the host aphid. This is the first report of polyamine assessment in a prokaryote-eukaryote endocellular symbiotic system, which demonstrated a unique polyamine composition.  相似文献   

19.
In the intertidal zone in the Pacific Northwest, body temperatures of sessile marine organisms can reach 35 degrees C for an extended time during low tide, resulting in potential physiological stress. We used immunochemical assays to examine the effects of thermal stress on endogenous Hsp70 levels in the intertidal barnacle Balanus glandula. After thermal stress, endogenous Hsp70 levels did not increase above control levels in B. glandula exposed to 20 and 28 degrees C. In a separate experiment, endogenous Hsp70 levels were higher than control levels when B. glandula was exposed to 34 degrees C for 8.5 h. Although an induced heat-shock response was observed, levels of conjugated ubiquitin failed to indicate irreversible protein damage at temperatures up to 34 degrees C. With metabolic labeling, we examined temperature acclimation and thermally induced heat-shock proteins in B. glandula. An induced heat-shock response of proteins in the 70-kDa region (Hsp70) occurred in B. glandula above 23 degrees C. This heat-shock response was similar in molting and non-molting barnacles. Acclimation of B. glandula to relatively higher temperatures resulted in higher levels of protein synthesis in the 70-kDa region and lack of an upward shift in the induction temperature for heat-shock proteins. Our results suggest that B. glandula may be well adapted to life in the high intertidal zone but may lack the plasticity to acclimate to higher temperatures.  相似文献   

20.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号