首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MOTIVATION: Several pattern discovery methods have been proposed to detect over-represented motifs in upstream sequences of co-regulated genes, and are for example used to predict cis-acting elements from clusters of co-expressed genes. The clusters to be analyzed are often noisy, containing a mixture of co-regulated and non-co-regulated genes. We propose a method to discriminate co-regulated from non-co-regulated genes on the basis of counts of pattern occurrences in their non-coding sequences. METHODS: String-based pattern discovery is combined with discriminant analysis to classify genes on the basis of putative regulatory motifs. RESULTS: The approach is evaluated by comparing the significance of patterns detected in annotated regulons (positive control), random gene selections (negative control) and high-throughput regulons (noisy data) from the yeast Saccharomyces cerevisiae. The classification is evaluated on the annotated regulons, and the robustness and rejection power is assessed with mixtures of co-regulated and random genes.  相似文献   

3.
4.
5.
We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs. We used human myogenic differentiation as a model system to statistically assess greater than 25,000 pairings of gene sets and motifs or motif combinations. We assigned functional annotations to candidate regulatory motifs predicted previously and identified gene sets that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the identification of putative regulatory motifs in mammalian genomes, toward understanding their biological roles. This approach is general and can be applied readily to any cell type, gene expression pattern or organism of interest.  相似文献   

6.
7.
8.
Microarrays are widely used for gene expression profiling. In the case of prokaryotes such arrays usually provide data about composition of modulons, groups of genes whose expression is influenced by a single regulatory system or external stimulus. Unlike modulons, regulons include only genes directly controlled by regulatory systems. Here we compared the structures of the Fnr and ArcA modulons and regulons. The data about modulon composition were taken from published microarray assays, whereas regulons were characterized using comparative genomic approaches. The Fnr and ArcA regulons were shown to contain 26 and 16 operons, respectively. Ten operons had high-score and highly conserved site for both Fnr and ArcA. These genes are the "core of regulons". Remarkably, all "core genes" encode enzymes involved in aerobic respiration and central metabolism. The Fnr-ArcA regulatory cascade plays an important role in expansion of the Fnr modulon.  相似文献   

9.
MOTIVATION: The whole genomes submitted to GenBank contain valuable information about the function of genes as well as the upstream sequences and whole cell expression provides valuable information on gene regulation. To utilize these large amounts of data for a biological understanding of the regulation of gene expression, new automatic methods for pattern finding are needed. RESULTS: Two word-analysis algorithms for automatic discovery of regulatory sequence elements have been developed. We show that sequence patterns correlated to whole cell expression data can be found using Kolmogorov-Smirnov tests on the raw data, thereby eliminating the need for clustering co-regulated genes. Regulatory elements have also been identified by systematic calculations of the significance of correlations between words found in the functional annotation of genes and DNA words occurring in their promoter regions. Application of these algorithms to the Saccharomyces cerevisiae genome and publicly available DNA array data sets revealed a highly conserved 9-mer occurring in the upstream regions of genes coding for proteasomal subunits. Several other putative and known regulatory elements were also found. AVAILABILITY: Upon request.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号