首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydration around the DNA fragment d(C5T5).(A5G5) is presented from two molecular dynamics simulations of 10 and 12 ns total simulation time. The DNA has been simulated as a flexible molecule with both the CHARMM and AMBER force fields in explicit solvent including counterions and 0.8 M additional NaCl salt. From the previous analysis of the DNA structure B-DNA conformations were found with the AMBER force-field and A-DNA conformations with CHARMM parameters. High-resolution hydration patterns are compared between the two conformations and between C.G and T.A base-pairs from the homopolymeric parts of the simulated sequence. Crystallographic results from a statistical analysis of hydration sites around DNA crystal structures compare very well with the simulation results. Differences between the crystal sites and our data are explained by variations in conformation, sequence, and limitations in the resolution of water sites by crystal diffraction. Hydration layers are defined from radial distribution functions and compared with experimental results. Excellent agreement is found when the measured experimental quantities are compared with the equivalent distribution of water molecules in the first hydration shell. The number of water molecules bound to DNA was found smaller around T.A base-pairs and around A-DNA as compared to B-DNA. This is partially offset by a larger number of water molecules in hydrophobic contact with DNA around T.A base-pairs and around A-DNA. The numbers of water molecules in minor and major grooves have been correlated with helical roll, twist, and inclination angles. The data more fully explain the observed B-->A transition at low humidity.  相似文献   

2.
The contribution of hydrogen bonds to protein-solvent interactions and their impact on structural flexibility and dynamics of myoglobin are discussed. The shift of vibrational peak frequencies with the temperature of myoglobin in sucrose/water and glycerol/water solutions is used to probe the expansion of the hydrogen bond network. We observe a characteristic change in the temperature slope of the O–H stretching frequency at the glass transition which correlates with the discontinuity of the thermal expansion coefficient. The temperature-difference spectra of the amide bands show the same tendency, indicating that stronger hydrogen bonding in the bulk affects the main-chain solvent interactions in parallel. However, the hydrogen bond strength decreases relative to the bulk solvent with increasing cosolvent concentration near the protein surface, which suggests preferential hydration. Weaker and/or fewer hydrogen bonds are observed at low degrees of hydration. The central O–H stretching frequency of protein hydration water is red-shifted by 40 cm–1 relative to the bulk. The shift increases towards lower temperatures, consistent with contraction and increasing strength of the protein-water bonds. The temperature slope shows a discontinuity near 180 K. The contraction of the network has reached a critical limit which leads to frozen-in structures. This effect may represent the molecular mechanism underlying the dynamic transition observed for the mean square displacements of the protein atoms and the heme iron of myoglobin. Received: 10 July 1996 / Accepted: 10 April 1997  相似文献   

3.
The structures at protein-water interface, i.e. the hydration structure of proteins, have been investigated by cryogenic X-ray crystal structure analyses. Hydration structures appeared far clearer at cryogenic temperature than at ambient temperature, presumably because the motions of hydration water molecules were quenched by cooling. Based on the structural models obtained, the hydration structures were systematically analyzed with respect to the amount of water molecules, the interaction modes between water molecules and proteins, the local and the global distribution of them on the surface of proteins. The standard tetrahedral interaction geometry of water in bulk retained at the interface and enabled the three-dimensional chain connection of hydrogen bonds between hydration water molecules and polar protein atoms. Large-scale networks of hydrogen bonds covering the entire surface of proteins were quite flexible to accommodate to the large-scale conformational changes of proteins and seemed to have great influences on the dynamics and function of proteins. The present observation may provide a new concept for discussing the dynamics of proteins in aqueous solution.  相似文献   

4.
The parmbsc0 force field was applied to study in detail the binding of netropsin, at a salt concentration of 0.28M Na(+), to the minor groove of an 8-mer (5'CCAATTGG)(2) DNA duplex forming a netropsin·DNA complex which previously has been characterized by X-ray crystallography, albeit with the use of closely related DNA duplexes. The X-ray structure revealed that the terminal guanidinium and amidinium groups of netropsin interact with the extreme ends of the palindromic AATT sequence of the receptor DNA. The parmbsc0 parameters of B-DNA and AMBER v9 parameters of netropsin generated a stable 6ns molecular dynamics (MD) trajectory for a 1:1 class I binding motif of this complex. Trajectory analysis for the salt and hydration effects on the binding of netropsin to the 8-mer DNA duplex revealed that 18 water molecules and 2 Na(+) are displaced from the DNA upon netropsin binding. A hydration density map of the complex parallels the X-ray data showing that two structured water molecules are localized near the netropsin guanidinium and amidinium groups forming H-bond bridges between the receptor and the ligand.  相似文献   

5.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

6.
Thermodynamics related to hydrated water upon protein unfolding is studied over a broad temperature range (5-125 degrees C). The hydration effect arising from the apolar interior is modeled as an increased number of hydrogen bonds between water molecules compared with bulk water. The corresponding contribution from the polar interior is modeled as a two-step process. First, the polar interior breaks hydrogen bonds in bulk water upon unfolding. Second, due to strong bonds between the polar surface and the nearest water molecules, we assume quantization using a simplified two-state picture. The heat capacity change upon hydration is compared with model compound data evaluated previously for 20 different proteins. We obtain good correspondence with the data for both the apolar and the polar interior. We note that the effective coupling constants for both models have small variations among the proteins we have investigated.  相似文献   

7.
Structural transitions of poly(rC)-Ka+ in humid films with different water content were studied by infrared spectroscopy and piezogravimetry. From analysis of the hydration isotherms and the dependence of spectral parameters (frequencies and intensities of the main bands) on n the hydration sites of the polynucleotide were determined (C2O, O4', N4H2, N1, PO2-, C2'OH). It was found that the transition of the polynucleotide from the unordered state to a double-stranded complex poly(rC+).poly(rC) occurs in the interval of n from 2 to 8. The value n = 8 corresponds to the total hydration of poly(rC). A model of hydration of poly(rC+).poly(rC) based on the experimental results and known X-ray parameters of this double helix complex is proposed. The most important feature of the model is the presence of single water bridges between PO2(-)-groups in the first hydration shell of each chain and triple water bridges between O4', N4H2 and C2'OH- atomic groups of opposite chains. The experimental results obtained and the proposed structure of hydration environment of poly(rC+).poly(rC) suggest that the stabilization of this complex is stabilized by the intra- and inter-chain water bridges and hydrogen bonds between pairs of cytosine bases.  相似文献   

8.
The transitions between the different helical conformations of DNA depend on the base sequence and the ambient conditions such as humidity and counter-ion concentration. In this study energy minimization techniques have been used to locate water molecule sites around nucleotides especially those which form hydrogen bonds between two or more nucleotide atoms and thus form solvent mediated bridges. We have studied several sequences and find that those which are known not to exist in the low hydration ‘A’ form have very similar number of bridging sites in both ‘A’ and ‘B’ conformations. Those sequences which are found in the ‘A’ conformation have considerably more bridging sites in this low hydration form than in the ‘B’ conformation. Sequence related solvent effects for a given conformation have also been analysed.  相似文献   

9.
Systems containing a base or a base pair and 25 water molecules, as well as a helical stack and 30 water molecules per base pair, have been simulated. Changes in the base hydration shell structure, after the bases have been included into the pair and then into the base pair stack, are discussed. Hydration shells of several configurations of the base pair stacks are discussed. Probabilities of formation of the hydrogen-bonded bridges of 1, 2 and 3 water molecules between hydrophilic centres have been estimated. The hydration shell structure was shown to depend on the nature of the base pair and on the stack configuration, while dependence of the global hydration shell characteristics on the stack configuration has been proved to be rather slight. The most typical structural elements of hydration shells, in the glycosidic (minor in B-like conformation) and non-glycosidic (major) grooves, for different configurations of AU and GC stacks, have been found and discussed. The number of hydrogen bonds between water molecules and bases per water molecule was shown to change upon transformation of the stack from A to B configuration. This result is discussed in connection with the reasons for B to A conformational transition and the concept of "water economy". Hydration shell patterns of NH2-groups of AU and GC helical stacks differ significantly.  相似文献   

10.
Raman spectroscopy is used to probe the nature of the hydrogen bonds which hold the water of hydration to DNA. The ~ 3450?cm?1 molecular O–H stretching mode shows that the first six water molecules per base pair of the primary hydration shell are very strongly bound to the DNA. The observed shift in the peak position of this mode permits a determination of the length of the hydrogen bonds for these water molecules. These hydrogen bonds appear to be about 0.3?Å shorter than the hydrogen bonds in bulk water. The linewidth of this mode shows no significant changes above water contents of about 15 water molecules per base pair. This technique of using a vibrational spectroscopy to obtain structural information about the hydration shells of DNA could be used to study the hydration shells of other biomolecules.  相似文献   

11.
12.
Study of the effects of pressure on macromolecular structure improves our understanding of the forces governing structure, provides details on the relevance of cavities and packing in structure, increases our understanding of hydration and provides a basis to understand the biology of high-pressure organisms. A study of DNA, in particular, helps us to understand how pressure can affect gene activity. Here we present the first high-resolution experimental study of B-DNA structure at high pressure, using NMR data acquired at pressures up to 200 MPa (2 kbar). The structure of DNA compresses very little, but is distorted so as to widen the minor groove, and to compress hydrogen bonds, with AT pairs compressing more than GC pairs. The minor groove changes are suggested to lead to a compression of the hydration water in the minor groove.  相似文献   

13.
Adjacent phosphate oxygen atoms in A and Z-DNA are located much closer together than in the B form and can be hydrated more economically due to the formation of water bridges between them, whereas in the B form phosphates are hydrated individually. This principle of hydration economy of phosphate groups discovered by Saenger and colleagues could not be applied to the B-D transition, which, like the B-A and B-Z transitions, occurs in a situation of water deficiency, because the distances between adjacent phosphates of individual polynucleotide chains in the D form are not much different from B-DNA. It follows from our calculations of B and D-DNA accessibility to solvent performed by the method of Lee & Richards, and from a simulation of solvent structure near DNA, that there is an economy of hydration only for the minor groove atoms. This feature and some experimental data can explain why only a limited range of sequences consisting of A.T or I.C pairs undergo the transition to the D form. The conformational transition in DNAs with such sequences to a poly[d(A]).poly[d(T])-like conformation (Bh-DNA), which is accompanied by a narrowing of the minor groove, can be explained in the same way. Calculations suggest that in the D-form minor groove of different A-T or I-C DNAs there is a double-layer hydration spine similar to that observed by Drew & Dickerson in the A-T tract of the d(C-G-C-G-A-A-T-T-C-G-C-G) dodecamer. The B-D and B-Bh transitions in A + T-rich DNAs can have biological implications, e.g. they can facilitate DNA bending upon the interaction with proteins.  相似文献   

14.
The hydration shell of several conformations of the polynucleotides poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) has been simulated using the Monte Carlo method (Metropolis sampling). Calculations have shown that the structure of the hydration shell of the minor groove greatly depends on its width. In conformations with a narrowed minor groove, the first layer of the hydration shell of this groove has only one molecule per nucleotide pair that forms H bonds with purine N3 of one pair and pyrimidine O2 of the next pair. The second layer of the hydration shell of such conformations contains molecules that form H bonds between two adjacent molecules of the first layer. The probability of formation of hydration spine is about 20% while the bridges of the first layer are formed with a probability of about 70%. In the first layer of the minor groove of the B-DNA conformation with wide minor groove there are approximately two water molecules per base pair that form H bonds with purine N3 or pyrimidine O2 and with the sugar ring oxygen of the adjacent nucleotide. The probability of simultaneous H bonding of a water molecule with N3 (or O2) and O of sugar ring is about 30%. The results of simulation suggest that hydration spine proposed for the narrowed minor groove of oligonucleotide crystals [H. R. Drew, and R. E. Dickerson (1981) Journal of Molecular Biology, Vol. 151, pp. 535-556] can be formed in fibers of poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) as well as in DNA fragments of these sequences in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Feig M  Pettitt BM 《Biopolymers》1998,48(4):199-209
Recent results from molecular dynamics (MD) simulations on hydration of DNA with respect to conformation are reviewed and compared with experimental data. MD simulations of explicit solvent around DNA can now give a detailed model of DNA that not only matches well with the experimental data but provides additional insight beyond current experimental limitations. Such simulation results are analyzed with a focus on differential hydration properties between A- and B-DNA and between C/G and A/T base pairs. The extent of hydration is determined from the number of waters in the primary shell and compared to experimental numbers from different measurements. High-resolution hydration patterns around the whole DNA are shown and correlated with the conformations. The role of ions associating with DNA is discussed with respect to changes in the hydration structure correlating with DNA conformation.  相似文献   

16.
采用分子动力学方法和全原子模型研究尿素和水分子对模型蛋白S-肽链结构转化的影响。模拟结果显示S-肽链的变性速率常数k值随着尿素浓度的增加而先降低后升高,在尿素浓度为2.9 mol/L时达到最低值。模拟了不同尿素浓度下尿素-肽链、水-肽链以及肽链分子氢键的形成状况。结果表明:尿素浓度较低时,尿素分子与S-肽链的极性氨基酸侧链形成氢键,但不破坏其分子内的骨架氢键,尿素在S-肽链水化层外形成限制性空间,增强了S-肽链的稳定性。随着尿素的升高,尿素分子进入S-肽链内部并与其内部氨基酸残基形成氢键,导致S-肽链的骨架氢键丧失,S-肽链发生去折叠。上述模拟结果与文献报道的实验结果一致,从分子水平上揭示了尿素对蛋白质分子结构变化的影响机制,对于研究和发展蛋白质折叠及稳定化技术具有指导意义。  相似文献   

17.
Binding of Hoechst 33258 to the minor groove of B-DNA   总被引:28,自引:0,他引:28  
An X-ray crystallographic structure analysis has been carried out on the complex between the antibiotic and DNA fluorochrome Hoechst 33258 and a synthetic B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G. The drug molecule, which can be schematized as: phenol-benzimidazole-benzimidazole-piperazine, sits within the minor groove in the A-T-T-C region of the DNA double helix, displacing the spine of hydration that is found in drug-free DNA. The NH groups of the benzimidazoles make bridging three-center hydrogen bonds between adenine N-3 and thymine O-2 atoms on the edges of base-pairs, in a manner both mimicking the spine of hydration and calling to mind the binding of the auti-tumor drug netropsin. Two conformers of Hoechst are seen in roughly equal populations, related by 180 degrees rotation about the central benzimidazole-benzimidazole bond: one form in which the piperazine ring extends out from the surface of the double helix, and another in which it is buried deep within the minor groove. Steric clash between the drug and DNA dictates that the phenol-benzimidazole-benzimidazole portion of Hoechst 33258 binds only to A.T regions of DNA, whereas the piperazine ring demands the wider groove characteristic of G.C regions. Hence, the piperazine ring suggests a possible G.C-reading element for synthetic DNA sequence-reading drug analogs.  相似文献   

18.
The crystal structure of the complex between the N-terminal DNA-binding domain of Tc3 transposase and an oligomer of transposon DNA has been determined. The specific DNA-binding domain contains three alpha-helices, of which two form a helix-turn-helix (HTH) motif. The recognition of transposon DNA by the transposase is mediated through base-specific contacts and complementarity between protein and sequence-dependent deformations of the DNA. The HTH motif makes four base-specific contacts with the major groove, and the N-terminus makes three base-specific contacts with the minor groove. The DNA oligomer adopts a non-linear B-DNA conformation, made possible by a stretch of seven G:C base pairs at one end and a TATA sequence towards the other end. Extensive contacts (seven salt bridges and 16 hydrogen bonds) of the protein with the DNA backbone allow the protein to probe and recognize the sequence-dependent DNA deformation. The DNA-binding domain forms a dimer in the crystals. Each monomer binds a separate transposon end, implying that the dimer plays a role in synapsis, necessary for the simultaneous cleavage of both transposon termini.  相似文献   

19.
Choi Y  Cho KW  Jeong K  Jung S 《Carbohydrate research》2006,341(8):1020-1028
Systematic computational work for a series of 13 disaccharides was performed to provide an atomic-level insight of unique biochemical role of the alpha,alpha-(1-->1)-linked glucopyranoside dimer over the other glycosidically linked sugars. Superior osmotic and cryoprotective abilities of trehalose were explained on the basis of conformational and hydration characteristics of the trehalose molecule. Analyses of the hydration number and radial distribution function of solvent water molecules showed that there was very little hydration adjacent to the glycosidic oxygen of trehalose and that the dynamic conformation of trehalose was less flexible than any of the other sugars due to this anisotropic hydration. The remarkable conformational rigidity that allowed trehalose to act as a sugar template was required for stable interactions with hydrogen-bonded water molecules. Trehalose made an average of 2.8 long-lived hydrogen bonds per each MD step, which was much larger than the average of 2.1 for the other sugars. The stable hydrogen-bond network is derived from the formation of long-lived water bridges at the expense of decreasing the dynamics of the water molecules. Evidence for this dynamic reduction of water by trehalose was also established based on each of the lowest translational diffusion coefficients and the lowest intermolecular coulombic energy of the water molecules around trehalose. Overall results indicate that trehalose functions as a 'dynamic reducer' for solvent water molecules based on its anisotropic hydration and conformational rigidity, suggesting that macroscopic solvent properties could be modulated by changes in the type of glycosidic linkages in sugar molecules.  相似文献   

20.
Abstract

Systems containing a base or a base pair and 25 water molecules, as well as a helical stack and 30 water molecules per base pair, have been simulated. Changes in the base hydration shell structure, after the bases have been included into the pair and then into the base pair stack are discussed. Hydration shells of several configurations of the base pair stacks are discussed. Probabilities of formation of the hydrogen-bonded bridges of 1, 2 and 3 water molecules between hydrophilic centres have been estimated. The hydration shell structure was shown to depend on the nature of the base pair and on the stack configuration, while dependence of the global hydration shell characteristics on the stack configuration has been proved to be rather slight. The most typical structural elements of hydration shells, in the glycosidic (minor in B-like conformation) and non-glycosidic (major) grooves, for different configurations of AU and GC stacks, have been found and discussed. The number of hydrogen bonds between water molecules and bases per water molecule was shown to change upon transformation of the stack from A to B configuration. This result is discussed in connection with the reasons for B to A conformational transition and the concept of “water economy”. Hydration shell patterns of NH2-groups of AU and GC helical stacks differ significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号