首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.  相似文献   

3.
The characterisation of ligands that activate the JAK/STAT pathway has the potential to throw light onto a comparatively poorly understood aspect of this important signal transduction cascade. Here, we describe our analysis of the only invertebrate JAK/STAT pathway ligands identified to date, the Drosophila unpaired-like family. We show that upd2 is expressed in a pattern essentially identical to that of upd and demonstrate that the proteins encoded by this region activate JAK/STAT pathway signalling. Mutational analysis demonstrates a mutual semi-redundancy that can be visualised in multiple tissues known to require JAK/STAT signalling. In order to better characterise the in vivo function of these ligands, we developed a reporter based on a natural JAK/STAT pathway responsive enhancer and show that ectopic upd2 expression can effectively activate the JAK/STAT pathway. While both Upd and Upd2 are secreted JAK/STAT pathway agonists, tissue culture assays show that the signal-sequences of Upd and Upd2 confer distinct properties, with Upd associated primarily with the extracellular matrix and Upd2 secreted into the media. The differing biophysical characteristics identified for Upd-like molecules have implications for their function in vivo and adds another aspect to our understanding of cytokine signalling in Drosophila.  相似文献   

4.
5.
6.
The Jak/STAT pathway in model organisms: emerging roles in cell movement   总被引:1,自引:0,他引:1  
The JAK/STAT pathway was originally identified in mammals. Studies of this pathway in the mouse have revealed that JAK/STAT signaling plays a central role during hematopoeisis and other developmental processes. The role of JAK/STAT signaling in blood appears to be conserved throughout evolution, as it is also required during fly hematopoeisis. Studies in Dictyostelium, Drosophila, and zebrafish have shown that the JAK/STAT pathway is also required in an unusually broad set of developmental decisions, including cell proliferation, cell fate determination, cell migration, planar polarity, convergent extension, and immunity. There is increasing evidence that the versatility of this pathway relies on its cooperation with other signal transduction pathways. In this review, we discuss the components of the JAK/STAT pathway in model organisms and what is known about its requirement in cellular and developmental processes. In particular, we emphasize recent insights into the role that this pathway plays in the control of cell movement.  相似文献   

7.
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.  相似文献   

8.
The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs), which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs), which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK) signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior.  相似文献   

9.
Stem cells have become one of the "buzz" topics in the last decade or so. One of the best systems to study adult stem cells in vivo is in the model organism, Drosophila melanogaster. One hundred years of genetic analysis, a sequenced and highly annotated genome and genomics makes this a difficult organism to avoid. The JAK/STAT pathway has been shown to regulate stem cells during haematopoiesis and gametogenesis in Drosophila. In this review we cover the current literature and contrast each group of stem cells with respect to JAK/STAT signaling.  相似文献   

10.
JAK/STAT signaling is essential for a wide range of developmental processes in Drosophila melanogaster. The mechanism by which the JAK/STAT pathway contributes to these processes has been the subject of recent investigation. However, a reporter that reflects activity of the JAK/STAT pathway in all Drosophila tissues has not yet been developed. By placing a fragment of the Stat92E target gene Socs36E, which contains at least two putative Stat92E binding sites, upstream of GFP, we generated three constructs that can be used to monitor JAK/STAT pathway activity in vivo. These constructs differ by the number of Stat92E binding sites and the stability of GFP. The 2XSTAT92E-GFP and 10XSTAT92E-GFP constructs contain 2 and 10 Stat92E binding sites, respectively, driving expression of enhanced GFP, while 10XSTAT92E-DGFP drives expression of destabilized GFP. We show that these reporters are expressed in the embryo in an overlapping pattern with Stat92E protein and in tissues where JAK/STAT signaling is required. In addition, these reporters accurately reflect JAK/STAT pathway activity at larval stages, as their expression pattern overlaps that of the activating ligand unpaired in imaginal discs. Moreover, the STAT92E-GFP reporters are activated by ectopic JAK/STAT signaling. STAT92E-GFP fluorescence is increased in response to ectopic upd in the larval eye disc and mis-expression of the JAK kinase hopscotch in the adult fat body. Lastly, these reporters are specifically activated by Stat92E, as STAT92E-GFP reporter expression is lost cell-autonomously in stat92E homozygous mutant tissue. In sum, we have generated in vivo GFP reporters that accurately reflect JAK/STAT pathway activation in a variety of tissues. These reporters are valuable tools to further investigate and understand the role of JAK/STAT signaling in Drosophila.  相似文献   

11.
12.
High levels of interspecies conservation characterise all signal transduction cascades and demonstrate the significance of these pathways over evolutionary time. Here, we review advances in the field of JAK/STAT signalling, focusing on recent developments in Drosophila. In particular, recent results from genetic and genome-wide RNAi screens, as well as studies into the developmental roles played by this pathway, highlight striking levels of physical and functional conservation in processes such as cellular proliferation, immune responses and stem cell maintenance. These insights underscore the value of model organisms for improving our understanding of this human disease-relevant pathway.  相似文献   

13.
Striking similarities continue to emerge between the mammalian and Drosophila JAK/STAT signaling pathway. However, until now there has not been the ability to monitor global pathway activity during development. We have generated a transgenic animal with a JAK/STAT responsive reporter gene that can be used to monitor pathway activation in whole Drosophila embryos. Expression of the lacZ reporter regulated by STAT92E binding sites can be detected throughout embryogenesis, and is responsive to the Janus Kinase hopscotch and the ligand upd. The system has enabled us to identify the effect of a predicted gene related to upd, designated upd2, whose expression initiates during germ band extension. The stimulatory effect of upd2 on the JAK/STAT reporter can also be demonstrated in Drosophila tissue culture cells. This reporter system will benefit future investigations of JAK/STAT signaling modulators both in whole animals and tissue culture.  相似文献   

14.
The JAK/STAT pathway and Drosophila development.   总被引:1,自引:0,他引:1  
The JAK/STAT signal transduction pathway plays a critical role in mammalian cells, particularly in hematopoiesis and immune responses. Several components of this pathway have been identified and characterized in Drosophila. Mutational analyses of these components have revealed a number of interesting developmental roles, and provide a mechanism to identify other interacting molecules and pathways. Hence, the JAK/STAT pathway in Drosophila serves as an attractive model for in vivo functional analyses of JAK/STAT signaling.  相似文献   

15.
The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.  相似文献   

16.
D L Silver  D J Montell 《Cell》2001,107(7):831-841
The JAK/STAT signaling pathway, renowned for its effects on cell proliferation and survival, is constitutively active in various human cancers, including ovarian. We have found that JAK and STAT are required to convert the border cells in the Drosophila ovary from stationary, epithelial cells to migratory, invasive cells. The ligand for this pathway, Unpaired (UPD), is expressed by two central cells within the migratory cell cluster. Mutations in upd or jak cause defects in migration and a reduction in the number of cells recruited to the cluster. Ectopic expression of either UPD or JAK is sufficient to induce extra epithelial cells to migrate. Thus, a localized signal activates the JAK/STAT pathway in neighboring epithelial cells, causing them to become invasive.  相似文献   

17.
18.
It is commonly accepted that activation of most signalling pathways is induced by ligand receptor dimerisation. This belief has been challenged for some vertebrate cytokine receptors of the JAK/STAT pathway. Here we study whether DOME, the Drosophila receptor of the JAK/STAT pathway, can dimerise and if the dimerisation is ligand-dependent. To analyse DOME homo-dimerisation, we have applied a beta-gal complementation technique that allows the detection of protein interactions in situ. This technique has been used previously in cell culture but this is the first time that it has been applied to whole embryos. We show that this technique, which we rename betalue-betalau technique, can be used to detect DOME homo-dimerisation in Drosophila developing embryos. Despite DOME being ubiquitously expressed, dimerisation is developmentally regulated. We investigate the state of DOME dimerisation in the presence or absence of ligand and show that DOME dimerisation is not ligand-induced, indicating that ligand independent cytokine receptor dimerisation is a conserved feature across phyla. We have further analysed the functional significance of ligand-independent receptor dimerisation by comparing the effects of ectopic ligand expression in cells in which the receptor is, or is not, dimerised. We show that ligand expression can only activate STAT downstream targets or affect embryo development in cells in which the receptor is dimerised. These results suggest a model in which ligand-independent dimerisation of the JAK/STAT receptor confers cells with competence to activate the pathway prior to ligand reception. Thus, competence to induce the JAK/STAT signalling pathway in Drosophila can be regulated by controlling receptor dimerisation prior to ligand binding. These results reveal a novel level of JAK/STAT signalling regulation that could also apply to vertebrates.  相似文献   

19.
20.
Over the last 20 years the JAK/STAT signal transduction pathway has been extensively studied. An enormous amount of data on different cell signal transduction pathways is now available. The JAK/STAT signal transduction pathway is one of the intracellular signaling pathways activated by cytokines and growth factors that was first studied in the hematopoietic system, but recent data demonstrate that this signal transduction is also greatly utilized by other systems. The JAK/STAT pathway is a signaling cascade that links the activation of specific cell membrane receptors to nuclear gene expression. This review is focused on the role of JAK/STAT signal transduction pathway activation in the central nervous system (CNS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号