首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Recovering native protein from aggregates is a common obstacle in the production of recombinant proteins. Recent reports have shown that hydrostatic pressure is an attractive alternative to traditional denature-and-dilute techniques, both in terms of yield and process simplicity. To determine the effect of process variables, we subjected tailspike aggregates to a variety of pressure-treatment conditions. Maximum native tailspike yields were obtained with only short pressure incubations (<5 min) at 240 MPa. However, some tailspike aggregates were resistant to pressure, despite multiple cycles of pressure. Extending the postpressure incubation time to 4 days improved the yield of native protein from aggregates from 19.4 +/- 0.9 to 47.4 +/- 19.6 microg/mL (approximately 78% yield of native trimer from nonaggregate material). The nearly exclusive conversion of monomer to trimer over the time scale of days, when combined with previous kinetic data, allows for the identification of three postpressure kinetic phases: a rapid phase consisting of structured dimer conversion to trimer (30 min), an intermediate phase consisting of monomer conversion to aggregate (100 min), and a slow phase consisting of conversion of monomer to trimer (days). Optimizing the production of structured dimer can yield the highest level of folded protein. Typical refolding additives, such as glycerol, or low-temperature incubation did not improve yields.  相似文献   

2.
Column-purified myosin at pH 7.0 will reproducibly aggregate into filaments of known average length and structure when dialyzed against a low ionic strength medium under controlled conditions. When exposed to increased hydrostatic pressure, followed by quick return to atmospheric pressure, the original filaments shorten linearly with increasing pressure; in addition, a second population of filaments is seen, presumably the result of reaggregation of myosin after release of pressure. This second population is about 0.5 microns long, bipolar, and about half the diameter of the original filaments. The number of these filaments, but not their physical characteristics, is a function of the shortening of the original filament population. Both the remnants of the original population and the new aggregates, once formed, are stable over time and at room temperature. The addition of C-protein to myosin solutions before filament preparation results in a filament population of slightly shorter length. When these filaments are exposed to increased hydrostatic pressure, they are more resistant to disaggregation than myosin filaments without C-protein. However, like the filaments prepared in the absence of C-protein, a second population of shorter, thinner filaments is visible after exposure to pressure.  相似文献   

3.
Native thick filaments isolated from freshly prepared rabbit psoas muscle were found to be resistant to pressure-induced dissociation. With increasing pressure application and release, a bimodal distribution of filament lengths was observed. The shorter filament length is associated with filament breakage at the center of the bare zone, while the longer length is associated with relatively intact filaments. Intact filaments and filament halves decrease in length by no more than 20% after exposure to and release of 14,000 psi. Bimodal distributions were not observed in equivalent experiments performed on filaments isolated from muscle glycerinated and stored at -20 degrees C for 6 months. Instead, filament dissociation proceeds linearly as a function of increasing pressure. Filaments prepared from muscle glycerinated and stored for 2 and 4 months exhibited pressure-induced behavior intermediate between the filaments prepared from fresh muscle and filaments prepared from muscle stored for 6 months. Since there appears to be no difference in the protein profiles of the various muscle samples, it is possible that stabilization of the native thick filament against hydrostatic pressure arises from trapped ions that are leached out over time.  相似文献   

4.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

5.
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.  相似文献   

6.
7.
8.
1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.  相似文献   

9.
Staves MP  Wayne R  Leopold AC 《Protoplasma》1992,168(3-4):141-152
Summary Hydrostatic pressure applied to one end of a horizontalChara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.  相似文献   

10.
11.
Hydrostatic pressure induces the fusion-active state of enveloped viruses.   总被引:3,自引:0,他引:3  
Enveloped animal viruses must undergo membrane fusion to deliver their genome into the host cell. We demonstrate that high pressure inactivates two membrane-enveloped viruses, influenza and Sindbis, by trapping the particles in a fusion-intermediate state. The pressure-induced conformational changes in Sindbis and influenza viruses were followed using intrinsic and extrinsic fluorescence spectroscopy, circular dichroism, and fusion, plaque, and hemagglutination assays. Influenza virus subjected to pressure exposes hydrophobic domains as determined by tryptophan fluorescence and by the binding of bis-8-anilino-1-naphthalenesulfonate, a well established marker of the fusogenic state in influenza virus. Pressure also produced an increase in the fusion activity at neutral pH as monitored by fluorescence resonance energy transfer using lipid vesicles labeled with fluorescence probes. Sindbis virus also underwent conformational changes induced by pressure similar to those in influenza virus, and the increase in fusion activity was followed by pyrene excimer fluorescence of the metabolically labeled virus particles. Overall we show that pressure elicits subtle changes in the whole structure of the enveloped viruses triggering a conformational change that is similar to the change triggered by low pH. Our data strengthen the hypothesis that the native conformation of fusion proteins is metastable, and a cycle of pressure leads to a final state, the fusion-active state, of smaller volume.  相似文献   

12.
A sublethal environmental stress, high-hydrostatic pressure (HHP) was reported to significantly improve the motility, viability and fertility parameters of frozen bull and boar semen. However, the mechanism of how HHP treatment improves survival rates at sperm cryopreservation remains unclear. The purpose of this study was to evaluate the effect of HHP treatment of fresh boar semen on the protein profile of boar sperm before and after freezing. Fresh, extended semen of eight boars was split, one part was treated with 200, 300 or 400bar for 90min using a custom made pressuring device before the start of the semen freezing procedure, and the other part was prepared without HHP treatment. After thawing, samples were checked for motility. The effect of HHP treatment on the post-thaw motility of frozen semen was significant (P=0.02). Post-thaw motility of each treatment groups increased compared to control (46% vs. 52%, 56% and 56%; control vs. 200bar, 300bar and 400bar treatments). Samples for protein analysis were collected from the 300bar treatment group before HHP treatment at room temperature (25+/-3 degrees C), at 5 degrees C of the cooling process and after thawing with or without HHP treatment. The sperm were lysed using a urea-pyranoside-dithiothreitol buffer to extract their proteins for protein analysis. Approximately 800microg total proteins were assayed by two-dimensional gel electrophoresis and stained with colloidal Coomassie blue. The levels of 125 protein spots were quantified. The results revealed that the levels of 7 protein spots differed significantly among treatments. The identities of various protein constituents were identified by mass spectrometry and database searching. Ubiquinol-cytochrome c reductase complex core protein 1, perilipin, and carbohydrate-binding protein AWN precursor were identified as HHP response proteins being significantly higher in HHP-treated samples. Testis-specific glyceraldehyde 3-phosphate dehydrogenase, outer dense fiber of sperm tails 2 isoform 10, cytosolic 5'-nucleotidase 1B, and quinone oxidoreductase represented the cooling and freezing related proteins. The differing levels of these identified proteins could be valuable for further exploring the protective mechanism of the HHP treatment in frozen-thawed porcine sperm.  相似文献   

13.
M Silow  Y J Tan  A R Fersht  M Oliveberg 《Biochemistry》1999,38(40):13006-13012
Recent results on the 102 residue protein U1A show that protein aggregation is not always slow and irreversible but may take place transiently in refolding studies on a millisecond time scale. In this study we observe a similar aggregation behavior with the classical two-state protein CI2. Since both U1A and CI2 appear to fold directly from the coil at low protein concentrations, it is likely that the aggregates also form directly from the coil. This is in contrast to the behavior of larger multistate proteins where aggregation occurs in connection to "sticky" intermediates.  相似文献   

14.
15.
Erythrocytes oxidized or aged in the circulation undergo membrane protein aggregation and anti-band 3 autoantibody binding to the cell surface. When human erythrocytes were mildly oxidized in vitro with 0.1 mM Fe(III) at 37 degrees C for 3 h, the aggregation of nonionic detergent C(12)E(8)-insoluble membrane protein and the binding of anti-band 3 IgG to the cell surface were increased. Incubation of membranes isolated from the oxidized cells increased the amount of protein aggregates by 5-fold after 6 h, while incubation for a further 12 h sharply decreased the amount of aggregates. In the presence of diisopropyl fluorophosphate (DFP), however, the increased amount of aggregates was maintained in the subsequent incubation. Western blot analysis of the aggregates using rabbit anti-band 3 showed that band 3 protein aggregates increased in the initial stage of incubation and decreased upon subsequent incubation, whereas the increased band 3 protein aggregates did not subsequently decrease when membranes were incubated in the presence of DFP. Incubation of the oxidized cells at 37 degrees C for 18 h caused reduction of the membrane protein aggregates and the (125)I-anti-band 3 IgG binding to the cell surface, while incubation in the presence of DFP did not cause these reductions. The results suggest that the oxidation-induced cell membrane protein aggregates were probably removed by 80-kDa serine protease, namely, oxidized protein hydrolase (OPH), in the oxidized cell membranes [Fujino et al. (1998) Biochim. Biophys. Acta 1374, 47-54; (1998) J. Biochem. 124, 1077-1085; (2000) Biochim. Biophys. Acta 1478, 102-112], and as a result the increased anti-band 3 binding to the cell surface was reduced.  相似文献   

16.
The dissociation of mu- and m-calpains was studied by fluorescence spectroscopy under high hydrostatic pressure (up to 650 MPa). Increasing pressure induced a red shift of the tryptophan fluorescence of the calcium-free enzyme. The concentration dependence of the spectral transition was consistent with a pressure-induced dissociation of the subunits. Rising temperature increased the stability of calpain heterodimers and confirmed the predominance of hydrophobic interactions between monomers. At saturating calcium, the spectral transition was not observed for native or iodoacetamide-inactivated calpains, indicating that they were already dissociated by calcium. The reaction volume was about -150 ml mol-1 for both isoforms, and the dissociation constants at atmospheric pressure are approximately 10-12 M and 10-15 M for mu- and m-calpains, respectively. This result indicates a tighter interaction in the isoform that requires higher calcium concentration for activity.  相似文献   

17.
18.
The formation of native insulin either from scrambled insulin or from the separated A chain and B chain S-sulphonates by protein disulphide-isomerase was demonstrated with yields of 20-30% as measured by h.p.l.c. analysis, receptor binding and stimulation of lipogenesis. The h.p.l.c. profile of the reaction products shows that, among all the possible isomers containing both chains, the native hormone is by far the predominating product and consequently the most stable under certain conditions.  相似文献   

19.
Hydrostatic pressure (HP) is a mechanical stimulus that has received relatively little attention in the field of the cell biology of mechanotransduction. Generalized models, such as the tensegrity model, do not provide a detailed explanation of how HP might be detected. This is significant, because HP is an important mechanical stimulus, directing cell behaviour in a variety of tissues, including cartilage, bone, airways, and the vasculature. HP sensitivity may also be an important factor in certain clinical situations, as well as under unique environmental conditions such as microgravity. While downstream cellular effects have been well characterized, the initial HP sensation mechanism remains unclear. In vitro evidence shows that HP affects cytoskeletal polymerization, an effect that may be crucial in triggering the cellular response. The balance between free monomers and cytoskeletal polymers is shifted by alterations in HP, which could initiate a cellular response by releasing and (or) activating cytoskeleton-associated proteins. This new model fits well with the basic tenets of the existing tensegrity model, including mechanisms in which cellular HP sensitivity could be tuned to accommodate variable levels of stress.  相似文献   

20.
BACKGROUND: Septic shock is a leading cause of mortality in intensive care units. No new interventions in the last 20 years have made a substantial impact on the outcome of patients with septic shock. Identification of inhibitable pathways that mediate death in shock is an important goal. MATERIALS AND METHODS: Two novel caspase inhibitors, (2-indolyl)-carbonyl-Ala-Asp-fluoromethylketone (IDN 1529) and (1-methyl-3-methyl-2-indolyl)-carbonyl-Val-Asp-fluoromethylketone (IDN 1965), were studied in a murine model of endotoxic shock. RESULTS: IDN 1529 prolonged survival when given before or up to 3 hr after high-dose LPS (p < 0.01) and increased by 2.2-fold the number of animals surviving longterm after a lower dose of LPS (p < 0.01). Despite its similar chemical structure, IDN 1965 lacked these protective effects. Both compounds inhibited caspases 1, 2, 3, 6, 8, and 9, and both afforded comparable reduction in Fas- and LPS-induced caspase 3-like activity and apoptosis. Paradoxically, administration of IDN 1529 but not IDN 1965 led to an increase in the LPS-induced elevation of serum cytokines related directly (IL-1beta, IL-18) or indirectly (IL-1alpha, IL-1Ra) to the action of caspase 1. CONCLUSIONS: A process that appears to be distinct from both apoptosis and the release of inflammatory cytokines is a late-acting requirement for lethality in endotoxic shock. Inhibition of this process can rescue mice even when therapy is initiated after LPS has made the mice severely ill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号