共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model’s predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out. 相似文献
2.
Kuznetsov AV 《Journal of biological physics》2010,36(4):385-403
The purpose of this paper is to develop a method for calculating organelle transport in dendrites with a non-uniform cross-sectional
area that depends on the distance from the neuron soma. The model is based on modified Smith–Simmons equations governing molecular
motor-assisted organelle transport. The developed method is then applied to simulating organelle transport in branching dendrites
with two particular microtubule (MT) orientations reported from experiments. It is found that the rate of organelle transport
toward a dendrite’s growth cone heavily depends on the MT orientation, and since there is experimental evidence that the MT
orientation in a particular region of a dendrite may depend on the dendrite’s developmental stage, the obtained results suggest
that a rearrangement of the MT structure may depend on the amount of organelles needed at the growth cone. 相似文献
3.
Kuznetsov AV 《Mathematical biosciences》2010,228(2):195-202
This paper presents a theoretical study, based on modified Smith-Simmons equations, that compares transport of intracellular organelles in two different neurite outgrowths, dendrites and axons. It is demonstrated that the difference in microtubule polarity orientations in dendrites and axons has significant implications on motor-assisted transport in these neurite outgrowths. The developed approach presents a qualitative theoretical basis for understanding important questions such as why axons exhibit almost an unlimited grows potential in vitro while dendrites remain relatively short. It is shown that the difference in a microtubule polarity arrangement between axons and dendrites may be a regulatory mechanism for limiting dendritic growth. Other biological implications of the developed theory as well as other possible reasons for the difference in microtubule structure between axons and dendrites are discussed. 相似文献
4.
A.V. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(6):711-722
This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith–Simmons equations governing molecular-motor-assisted transport in neurons. It is established that the structure that develops as a result of a region with disoriented MTs consists of two organelle traps, the trap to the left of this region accumulates plus-end-oriented organelles and the trap to the right of this region accumulates minus-end-oriented organelles. The presence of such a structure is shown to inhibit the transport of organelles down the axon. The degree by which the transport of organelles is inhibited depends on the degree of polar mismatching of MTs in the region between MT traps. Four cases with a different degree of polar mismatching are investigated. 相似文献
5.
This theoretical research is motivated by a recent model of microtubule (MT) transport put forward by Baas and Mozgova (Cytoskeleton 69:416–425, 2012). According to their model, in an axon all plus-end-distal mobile MTs move anterogradely while all minus-end-distal mobile MTs move retrogradely. Retrograde MT transport thus represents a mechanism by which minus-end-distal MTs are removed from the axon. We suggested equations that implement Baas and Mozgova’s model. We employed these equations to simulate transport of short mobile MTs from a region (such as the site of axonal branch formation) where MT severing activity results in generation of a large number of short MTs of both orientations. We obtained the exact and approximate transient solutions of these equations utilizing the Laplace transform technique. We applied the obtained solutions to calculate the average rates of anterograde and retrograde transport of short MTs. 相似文献
6.
This paper develops analytical solutions describing slow neurofilament (NF) transport in axons. The obtained solutions are based on two theories of NF transport: Nixon–Logvinenko’s theory that postulates that most NFs are incorporated into a stationary cross-linked network and only a small pool is slowly transported and Jung–Brown’s theory that postulates a single dynamic pool of NFs that are transported according to the stop-and-go hypothesis. The simplest two-kinetic state version of the model developed by Jung and Brown was compared with the theory developed by Nixon and Logvinenko. The model for Nixon–Logvinenko’s theory included stationary, pausing, and running NF populations while the model used for Jung–Brown’s theory only included pausing and running NF populations. Distributions of NF concentrations resulting from Nixon–Logvinenko’s and Jung-Brown’s theories were compared. In previous publications, Brown and colleagues successfully incorporated slowing of NF transport into their model by assuming that some kinetic constants depend on the distance from the axon hillock. In this paper we defined the average rate of NF transport as the rate of motion of the center of mass of radiolabeled NFs. We have shown that for this definition, if all kinetic rates are assumed constant, Jung–Brown’s theory predicts a constant average rate of NF transport. We also demonstrated that Nixon–Logvinenko’s theory predicts slowing of NF transport even if all kinetic rates are assumed constant, and the obtained slowing agrees well with published experimental data. 相似文献
7.
Evidence that the Major Membrane Lipids, Except Cholesterol, Are Made in Axons of Cultured Rat Sympathetic Neurons 总被引:3,自引:2,他引:3
Jean E. Vance Debao Pan Robert B. Campenot Miguel Bussiere Dennis E. Vance§ 《Journal of neurochemistry》1994,62(1):329-337
Abstract: Membrane lipids and proteins required for axonal growth and regeneration are generally believed to be synthesized in the cell bodies of neurons and transported into the axons. However, we have demonstrated recently that, in cultured rat sympathetic neurons, axons themselves have the capacity to synthesize phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine. In these experiments, we employed a compartment model of neuron culture in which pure axons grow in a fluid environment separate from that containing the cell bodies. In the present study, we again used compartmented cultures to confirm and extend the previous results. We have shown that three enzymes of phosphatidylcholine biosynthesis via the CDP-choline pathway are present in axons. We have also shown that the rate-limiting step in the biosynthesis of phosphatidylcholine by this route in neurons, and locally in axons, is catalyzed by the enzyme CTP:phosphocholine cytidylyltransferase. The biosynthesis of other membrane lipids, such as phosphatidylserine, phosphatidylethanolamine derived by decarboxylation of phosphatidylserine, phosphatidylinositol, and fatty acids, also occurs in axons. However, the methylation pathway for the conversion of phosphatidylethanolamine into phosphatidylcholine appears to be a quantitatively insignificant route for phosphatidylcholine synthesis in neurons. Moreover, our data provided no evidence for the biosynthesis of another important membrane lipid, cholesterol, in axons. 相似文献
8.
Lund LM Machado VM McQuarrie IG 《Biochemical and biophysical research communications》2005,330(3):857-864
We have examined spinal motor neurons in Sprague-Dawley rats to further characterize a mechanoenzyme, myosin-Igamma (myr4), which is found in high concentration during axon tract formation in neonates. We raised an antibody to myr4 and made riboprobes for in situ hybridization. Myr4 mRNA was abundant in spinal cord motor neurons (particularly during axon regrowth). Nerves undergoing Wallerian degeneration (from a crush 7 days earlier) showed anti-myr4 labeling of the axolemma and SER--after microtubules, neurofilaments, and F-actin had already been degraded--which is consistent with a described lipid-binding domain in the tail region of myosin-Is. Newly synthesized myr4 was carried in axons by the slow component (SC) of axonal transport at 1-8 mm/day, whereas, none was carried by the fast component (FC). We conclude that SC delivers myr4 to the cytoplasmic surfaces of stationary axonal membranes (SER and axolemma). This positioning would anchor the tail domain of myr4 and leave the catalytic head domain free to interact with F-actin. 相似文献
9.
Ion channels are proteins forming hydrophilic pathways through the membranes of all living organisms. They play important roles in the electrogenic transport of ions and metabolites. Because of biophysical properties such as high selectivity for the permeant ion, high turnover rate, and modulation by physico-chemical parameters (e.g., membrane potential, calcium concentration), they are involved in several physiological processes in plant cells (e.g., maintenance of the turgor pressure, stomatal movements, and nutrient absorption by the roots). As plants cannot move, plant metabolism must be flexible and dynamic, to cope with environmental changes, to compete with other living species and to prevent pathogen invasion. An example of this flexibility and dynamic behavior is represented by their handling of the so-called reactive oxygen species, inevitable by-products of aerobic metabolism. Plants cope with these species on one side avoiding their toxic effects, on the other utilizing them as signalling molecules and as a means of defence against pathogens. In this review, we present the state-of-the-art of the modulation of plant ion channels by oxidizing and reducing agents. 相似文献
10.
A.V. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(3):239-251
This paper develops a method of calculating the transport of intracellular organelles in neurons with branching neurites which is based on the Smith–Simmons equations of motor-assisted transport. The method is aimed at understanding the effects of microtubule (MT) polarity orientation in branching neurites on transport of organelles at the fundamental level. The method is applied to calculating the organelle transport in axons and dendrites of Drosophila neurons, using the map of MT orientation in such neurons developed by Stone et al. (Mol Biol Cell 19:4122–4129, 2008). The proximal dendrite is assumed to branch and form two distal dendrites. Two different MT polarity arrangements in a proximal dendrite are considered, and implications of these MT arrangements on organelle transport are analysed. It is demonstrated that the MT arrangement found in Drosophila dendrites (MTs have their minus ends out in a proximal dendrite) results in much more efficient motor-driven transport than the structure with a mixed MT orientation in proximal dendrites. 相似文献
11.
A. V. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(12):1117-1131
This paper develops a model for simulating organelle transport in Drosophila unipolar motor neurons. The paper is motivated by a recent experimental investigation by Stone et al. (Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol Biol Cell.19:4122-4129) who proposed a map of microtubule (MT) orientation in Drosophila neurons, and explained why dynein mutations selectively impede dendritic growth without having much effect on axonal growth. Two different approaches to modelling the effect of dynein mutations are utilised: one through assuming a reduced average velocity of a dynein mutant motor and the other through assuming its decreased processivity (an increased detachment rate from MTs). Modified Smith–Simmons equations are used for developing a continuum model of the process. Distributions of organelle concentrations as well as distributions of diffusion, motor-driven and total organelle fluxes are simulated. 相似文献
12.
A. V. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(12):1263-1271
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions. 相似文献
13.
《Microbes and infection / Institut Pasteur》2014,16(3):225-236
Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14 (Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-l-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. Together with earlier studies, these results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton. 相似文献
14.
Lysophosphatidic Acid Induces a Sustained Elevation of Neuronal Intracellular Calcium 总被引:2,自引:2,他引:2
Frederick W. Holtsberg Marion R. Steiner †Katsutoshi Furukawa Jeffrey N. Keller †Mark P. Mattson Sheldon M. Steiner 《Journal of neurochemistry》1997,69(1):68-75
Abstract: Lysophosphatidic acid (LPA) is a lipid biomediator enriched in the brain. A novel LPA-induced response in rat hippocampal neurons is described herein, namely, a rapid and sustained elevation in the concentration of free intracellular calcium ([Ca2+ ]i ). This increase is specific, in that the related lipids phosphatidic acid and lysophosphatidylcholine did not induce an alteration in [Ca2+ ]i . Moreover, consistent with a receptor-mediated process, there was no further increase in [Ca2+ ]i after a second addition of LPA. The LPA-induced increase in [Ca2+ ]i required extracellular calcium. However, studies with Cd2+ , Ni2+ , and nifedipine and nystatin-perforated patch clamp analyses did not indicate involvement of voltage-gated calcium channels in the LPA-induced response. In contrast, glutamate appears to have a significant role in the LPA-induced increase in [Ca2+ ]i , because this increase was inhibited by NMDA receptor antagonists and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonists. Thus, LPA treatment may result in an increased extracellular glutamate concentration that could stimulate AMPA/kainate receptors and thereby alleviate the Mg2+ block of the NMDA receptors and lead to glutamate stimulation of an influx of calcium via NMDA receptors. 相似文献
15.
Andrew F. LoftusVivian L. Hsieh Raghuveer Parthasarathy 《Biochemical and biophysical research communications》2012,426(4):585-589
The sculpting of membranes into highly curved vesicles is central to intracellular cargo trafficking, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical trap based assay that measures in vitro membrane response to imposed deformations, we examined the behavior of the two human paralogs of Sar1, a key component of the COPII family of vesicle coat proteins. Like their yeast counterpart, the human Sar1 proteins can lower the mechanical rigidity of the membranes to which they bind. Unlike the yeast Sar1, the rigidity is not a monotonically decreasing function of concentration. At high concentrations, we find increased bending rigidity and decreased protein mobility. These features imply a model in which protein clustering governs membrane mechanical properties. 相似文献
16.
Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions. 相似文献
17.
Arf GAP proteins are a versatile and diverse group of proteins. They control the activity of the GTP-binding proteins of the ARF family by inducing the hydrolysis of GTP that is bound to Arf proteins. The best-studied role of Arf GAPs is in intracellular traffic. In this review, we will focus mainly on the Arf GAPs that play a role in vesicle formation, Arf GAP1, Arf GAP2 and Arf GAP3 and their yeast homologues, Gcs1p and Glo3p. We discuss the roles of Arf GAPs as regulators and effectors for Arf GTP-binding proteins. 相似文献
18.
I.A. Kuznetsov 《Computer methods in biomechanics and biomedical engineering》2013,16(6):583-591
This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux. 相似文献
19.
Baker JE 《Journal of theoretical biology》2004,228(4):467-476
Motor enzymes catalyse chemical reactions, like the hydrolysis of ATP, and in the process they also perform work. Recent studies indicate that motor enzymes perform work with specific biochemical steps in their catalysed reactions, challenging the classical view that work can only be performed within a biochemical state. To address these studies an alternative class of models, often referred to as chemical motor models, has emerged in which motors perform work with biochemical transitions. In this paper, I develop a novel, self-consistent framework for chemical motor models, which accommodates multiple pathways for free energy transfer, predicts rich behaviors from the simplest multi-motor systems, and provides important new insights into muscle and motor function. 相似文献
20.
Martinez JE Vershinin MD Shubeita GT Gross SP 《Biochemical and biophysical research communications》2007,353(3):835-840
Molecular motors move many intracellular cargos along microtubules. Recently, it has been hypothesized that in vivo cargo velocity can be used to determine the number of engaged motors. We use theoretical and experimental approaches to investigate these assertions, and find that this hypothesis is inconsistent with previously described motor behavior, surveyed and re-analyzed in this paper. Studying lipid droplet motion in Drosophila embryos, we compare transport in a mutant, Delta(halo), with that in wild-type embryos. The minus-end moving cargos in the mutant appear to be driven by more motors (based on in vivo stall force observations). Periods of minus-end motion are indeed longer than in wild-type embryos but the corresponding velocities are not higher. We conclude that velocity is not a definitive read-out of the number of motors propelling a cargo. 相似文献