首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Store-operated Ca2+ entry (SOCE) is a mechanism regulated by the filling state of the intracellular Ca2+ stores that requires the participation of the Ca2+ sensor STIM1, which communicates the Ca2+ content of the stores to the plasma membrane Ca2+-permeable channels. We have recently reported that Orai1 mediates the communication between STIM1 and the Ca2+ channel hTRPC1. This event is important to confer hTRPC1 store depletion sensitivity, thus supporting the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of SOCE. Here we have explored the relevance of lipid rafts in the formation of the STIM1-Orai1-hTRPC1 complex and the activation of SOCE. Disturbance of lipid raft domains, using methyl-β-cyclodextrin, reduces the interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 upon depletion of the intracellular Ca2+ stores and attenuates thapsigargin-evoked Ca2+ entry. These findings suggest that TRPC1, Orai1 and STIM1 form a heteromultimer associated with lipid raft domains and regulated by the intracellular Ca2+ stores.  相似文献   

2.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

3.
4.
STIM1 is a transmembrane protein essential for the activation of store-operated Ca2+ entry (SOCE), a major Ca2+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca2+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca2+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca2+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca2+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn2+ entry, which was inhibited by increasing concentrations of extracellular Ca2+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca2+ entry induced by extracellular Ca2+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca2+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca2+ mediated by the interaction between plasma membrane-located STIM1 and Orai1.  相似文献   

5.
Store-operated Ca2+ entry (SOCE) from the extracellular space plays a critical role in agonist-mediated Ca2+ signaling in non-excitable cells. Here we show that SOCE is enhanced in COS-7 cells treated with staurosporine (ST), a protein kinase inhibitor. In COS-7 cells, stimulation with ATP induced Ca2+ release from intracellular Ca2+ stores and Ca2+ entry from the extracellular space. Ca2+ release was not affected by treatment with ST, but Ca2+ entry continued in the ST-treated cells even after the removal of ATP. ST did not inhibit Ca2+ sequestration into Ca2+ stores. The Ca2+ entry induced by cyclopiazonic acid (CPA), a reversible ER Ca2+ pump inhibitor, was maintained in ST-treated cells even after the removal of CPA, but was not maintained in the control cells. The sustained Ca2+ entry in ST-treated cells was completely attenuated by the SOCE inhibitors, La3+ and 2-APB. The large increase in Ca2+ entry produced in the cells co-expressing Venus-Orai1 and STIM1-mKO1 was stabilized with ST treatment, and confocal imaging of these cells suggested that the complex between Orai1 and STIM1 did not completely dissociate following the refilling of Ca2+ stores. These results show that SOCE remains activated even after the refilling of Ca2+ stores in ST-treated cells and that the effect of ST on SOCE may result from a stabilization of the Orai1–STIM1 interaction.  相似文献   

6.
The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration.  相似文献   

7.
Three decades ago, James W. Putney Jr. conceptualized the idea of store-operated calcium entry (SOCE) to explain how depletion of endoplasmic reticulum (ER) Ca2+ stores evokes Ca2+ influx across the plasma membrane. Since the publication of this highly influential idea, it is now established that SOCE is universal among non-excitable and probably even many types of excitable cells, and contributes to numerous effector functions impacting immunity, muscle contraction, and brain function. The molecules encoding SOCE, the STIM and Orai proteins, are now known and our understanding of how this pathway is activated in response to ER Ca2+ store depletion has advanced significantly. In this review, we summarize the current knowledge of how Orai1 channels are activated by STIM1, focusing on recent work supporting a hydrophobic gating mechanism for the opening of the Orai1 channel pore.  相似文献   

8.
Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca2+ levels via SOCE and therefor are less susceptible to Ca2+ overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca2+ homeostasis.  相似文献   

9.
Store-operated Ca2+ entry (SOCE) represents a ubiquitous Ca2+ influx pathway activated by the filling state of intracellular Ca2+ stores. SOCE is mediated by coupling of STIM1, the endoplasmic reticulum Ca2+ sensor, to the Orai1 channel. SOCE inactivates during meiosis, partly because of the inability of STIM1 to cluster in response to store depletion. STIM1 has several functional domains, including the Orai1 interaction domain (STIM1 Orai Activating Region (SOAR) or CRAC Activation Domain (CAD)) and STIM1 homomerization domain. When Ca2+ stores are full, these domains are inactive to prevent constitutive Ca2+ entry. Here we show, using the Xenopus oocyte as an expression system, that the C-terminal 200 residues of STIM1 are important to maintain STIM1 in an inactive state when Ca2+ stores are full, through predicted intramolecular shielding of the active STIM1 domains (SOAR/CAD and STIM1 homomerization domain). Interestingly, our data argue that the C-terminal 200 residues accomplish this through a steric hindrance mechanism because they can be substituted by GFP or mCherry while maintaining all aspects of STIM1 function. We further show that STIM1 clustering inhibition during meiosis is independent of the C-terminal 200 residues.  相似文献   

10.
《Biophysical journal》2020,118(1):70-84
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility—measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient—decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.  相似文献   

11.
Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca2+ entry (SOCE), a major Ca2+ influx pathway, and reduce the Ca2+ content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca2+ sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca2+ stores, σ1R accompanied STIM1 to ER–plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca2+ channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER–PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.  相似文献   

12.
Stromal interaction molecules STIM1 and STIM2 are endoplasmic reticulum (ER) Ca2+ sensors that initiate store-operated Ca 2+ entry (SOCE). The roles of STIM1-mediated SOCE in cancer biology have been highlighted in different types of cancer, but that of STIM2 is unknown. By the model of cervical cancer, here we focus on the cooperative regulation of SOCE by STIM proteins and their distinct roles in cellular function. Immunofluorescent stainings of surgical specimens of cervical cancer show that STIM1 and STIM2 are abundant in tumor tissues, but STIM1 is the major ER Ca 2+ sensor identified in the invasive front of cancer tissues. STIM1 or STIM2 overexpression in cervical cancer SiHa cells induces an upregulated SOCE. Regarding cellular function, STIM1 and STIM2 are necessary for cell proliferation, whereas STIM1 is the dominant ER Ca 2+ sensor involved in cell migration. During SOCE, STIM1 is aggregated and translocated towards the Orai1-containing plasma membrane in association with the microtubule plus-end binding protein EB1. In contrast, STIM2 is constitutively aggregated without significant trafficking or association with microtubules. These results show the distinct role of STIM1 and STIM2 in SOCE and cellular function of cervical cancer cells.  相似文献   

13.
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400–403), which is located within the CAD/SOAR domain. We determined this segment’s specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.  相似文献   

14.
The endoplasmic reticulum Ca2+-sensing STIM proteins mediate Ca2+ entry signals by coupling to activate plasma membrane Orai channels. We reveal that STIM-Orai coupling is rapidly blocked by hypoxia and the ensuing decrease in cytosolic pH. In smooth muscle cells or HEK293 cells coexpressing STIM1 and Orai1, acute hypoxic conditions rapidly blocked store-operated Ca2+ entry and the Orai1-mediated Ca2+ release-activated Ca2+ current (ICRAC). Hypoxia-induced blockade of Ca2+ entry and ICRAC was reversed by NH4+-induced cytosolic alkalinization. Hypoxia and acidification both blocked ICRAC induced by the short STIM1 Orai-activating region. Although hypoxia induced STIM1 translocation into junctions, it did not dissociate the STIM1-Orai1 complex. However, both hypoxia and cytosolic acidosis rapidly decreased Förster resonance energy transfer (FRET) between STIM1-YFP and Orai1-CFP. Thus, although hypoxia promotes STIM1 junctional accumulation, the ensuing acidification functionally uncouples the STIM1-Orai1 complex providing an important mechanism protecting cells from Ca2+ overload under hypoxic stress conditions.  相似文献   

15.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

16.
膜蛋白质Orail组成了一类被称为钙释放激活钙通道(CRAC)的离子通道,并且由相互作用的蛋白质STIM1作为其在内质网上的钙感受器.但是这类通道的调节机制还未研究透彻.通过串连亲和纯化STIM1-Orai1复合体,发现与之相互作用的内质网蛋白质RCN2.共聚焦显微术显示RCN2与STIM1在钙库排空前后完全共定位.对RCN2的EFhands结构突变体所作单细胞测钙,结果显示其对钙库操控通道电流特性有微弱影响.全内反射荧光显微术显示,RCN2以花环状围绕包围STIM1聚集堆,这提示RCN2在STIM1聚集中起到一种结构约束作用.  相似文献   

17.
Store-operated calcium entry (SOCE) is a major mechanism for Ca2+ entry in excitable and non-excitable cells. The best-characterised store-operated current is ICRAC, but other currents activated by Ca2+ store depletion have also been reported. The recent identification of the proteins stromal interaction molecule 1 (STIM1) and Orai1 has shed new light on the nature and regulation of SOC channels. STIM1 has been presented as the endoplasmic reticulum (ER) Ca2+ sensor that communicates the content of the Ca2+ stores to the store-operated channels, a mechanism that involves redistribution of STIM1 to peripheral ER sites and co-clustering with the Ca2+ channel subunit, Orai1. Interestingly, TRPC1, which has long been proposed as a SOC channel candidate, associates with Orai1 and STIM1 in a ternary complex that appears to increase the variability of SOC currents available to modulate cell function.  相似文献   

18.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

19.
During myogenesis, a long splice variant of STIM1, called STIM1L is getting expressed, while the level of STIM1 remains constant. Previous work demonstrated that STIM1L is more efficient in eliciting store-operated Ca2+ entry (SOCE), but no current analysis of the channel(s) activated by this new STIM1L isoform was performed until now. In this study, we investigate the ionic channel(s) activated by STIM1L and whether differences exist between the two STIM1 isoforms, using HEK-293 T cells as a model system. Our data show that STIM1 and STIM1L activate Orai1 channel but also the endogenously expressed TRPC1. The channel activation occurs in two steps, with first Orai1 activation followed, in a subset of cells, by TRPC1 opening. Remarkably, STIM1L more frequently activates TRPC1 and preferentially interacts with TRPC1. In low intracellular Ca2+ buffering condition, the frequency of TRPC1 opening increases significantly, strongly suggesting a Ca2+-dependent channel activation. The ability of STIM1L to open Orai1 appears decreased compared to STIM1, which might be explained by its stronger propensity towards TRPC1. Indeed, increasing the amount of STIM1L results in an enhanced Orai1 current. The role of endogenous TRPC1 in STIM1- and STIM1L-induced SOCE was confirmed by Ca2+ imaging experiments. Overall, our findings provide a detailed analysis of the channels activated by both STIM1 isoforms, revealing that STIM1L is more prone to open TRPC1, which might explain the larger SOCE elicited by this isoform.  相似文献   

20.
Physiological platelet activation and thrombus formation are essential to stop bleeding in case of vascular injury, whereas inadequate triggering of the same process in diseased vessels can lead to fatal thromboembolism and tissue ischemia of vital organs. A central step in platelet activation is agonist-induced elevation of the intracellular Ca2+ concentration. This happens on the one hand through the release of Ca2+ from intracellular stores and on the other hand through Ca2+ influx from the extracellular space. In platelets, the major Ca2+ influx pathway is the so-called store operated Ca2+ entry (SOCE), induced by store depletion. Studies in the last five years discovered the molecular background of platelet SOCE. Stromal interaction molecule 1 (STIM1) and Orai1, two so far unknown molecules, got in the focus of research. STIM1 was found to be the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, whereas Orai1 was identified as the major store operated Ca2+ (SOC) channel in the plasma membrane. These two molecules and their role in platelet function and thrombus formation are the topic of the present review with a special focus on apoptosis and apoptosis-like processes in platelet physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号