首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transportation amongst cities is found as one of the main factors which affect the outbreak of diseases. To understand the effect of transport-related infection on disease spread, an SEIRS (Susceptible, Exposed, Infectious, Recovered) epidemic model for two cities is formulated and analyzed. The epidemiological threshold, known as the basic reproduction number, of the model is derived. If the basic reproduction number is below unity, the disease-free equilibrium is locally asymptotically stable. Thus, the disease can be eradicated from the community. There exists an endemic equilibrium which is locally asymptotically stable if the reproduction number is larger than unity. This means that the disease will persist within the community. The results show that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, the result shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. Further, the formulated model is applied to the real data of SARS outbreak in 2003 to study the transmission of disease during the movement between two regions. The results show that the transport-related infection is effected to the number of infected individuals and the duration of outbreak in such the way that the disease becomes more endemic due to the movement between two cities. This study can be helpful in providing the information to public health authorities and policy maker to reduce spreading disease when its occurs.  相似文献   

2.
Controlled laboratory and field experiments were performed to determine the developmental response to temperature and moisture of Arundo donax, a riparian invasive grass and potential bioenergy crop. A logistic function was parameterized and used to predict thermal times to sprouting and the nine-leaf stage. Consistent estimates of the base temperature (Tb) and base water potential (ψb) below which development ceases were obtained from various statistical and mathematical analyses. Estimates of Tb and ψb were 12.7 ± 1.7 °C and −1.56 ± 0.43 MPa, respectively, for the median fraction of sprouting rhizomes. Median hydrothermal time to sprouting was 124.1 MPa °Cd under laboratory conditions and median thermal times, or degree-day (°Cd), to sprouting and nine-leaf stage was estimated to be 94 and 129 °Cd under field conditions, respectively. A degree-day is defined as one day (24 h) spent one degree above Tb. Results demonstrated that thermal time alone is sufficient to accurately predict time to sprouting under field conditions. Further, there may be a fixed moisture threshold of about 6% volumetric water content above which sprouting rate was constant. This threshold corresponded very closely to the −1.5 MPa for ψb that was estimated under laboratory conditions for the soil typically infested by A. donax. This information is crucial for assessing risk of invasive spread for A. donax.  相似文献   

3.
4.
A multi-group semi-stochastic model is formulated to describe Salmonella   dynamics on a pig herd within the UK and assess whether farm structure has any effect on the dynamics. The models include both direct transmission and indirect (via free-living infectious units in the environment and airborne infection). The basic reproduction number R0R0 is also investigated. The models estimate approximately 24.6% and 25.4% of pigs at slaughter weight will be infected with Salmonella within a slatted-floored and solid-floored unit respectively, which corresponds to values found in previous abattoir and farm studies, suggesting that the model has reasonable validity. Analysis of the models identified the shedding rate to be of particular importance in the control of Salmonella   spread, a finding also evident in an increase in the R0R0 value.  相似文献   

5.
Ensifer meliloti (formerly Sinorhizobium meliloti) was first considered as a specific microsymbiont of Medicago, Melilotus and Trigonella. However, strains of E. meliloti were recovered from root nodules of various legume species and their symbiotic status still remains unclear. Here, we further investigate the specificity of these strains. A collection of 47 E. meliloti strains isolated in Tunisia from root nodules of Medicago truncatula, Medicago sativa, Medicago ciliaris, Medicago laciniata, Medicago marina, Medicago scutellata, Phaseolus vulgaris, Cicer arietinum, Argyrolobium uniflorum, Lotus creticus, Lotus roudairei, Ononis natrix, Retama raetam, Genista saharae, Acacia tortilis, Hedysarum carnosum and Hippocrepis bicontorta were examined by REP-PCR fingerprinting, PCR-RFLPs of the 16S-23S rDNA IGS, the nifH gene and nifD-K intergenic spacer, and sequencing of 16S rRNA and nodA genes. Their nodulation range was also assessed by cross-inoculation experiments. No clear correlation was found between chromosomal backgrounds and host plants of origin. The nodulation polyvalence of the species E. meliloti was associated with a high symbiotic heterogeneity. On the basis of PCR-RFLP data from the nifH gene and nifD-K intergenic spacer, E. meliloti strains isolated from non-Medicago legumes harboured distinct genes and possessed wider host ranges. Some strains did not nodulate Medicago species. On the basis of nodA phylogeny, the majority of the Tunisian strains, including strains from Medicago, harboured distinct nodA alleles more related to those found in E. medicae than those found in E. meliloti. However, more work is still needed to characterize this group further. The diversity observed among M. laciniata isolates, which was supported by nodA phylogeny, nifH typing and the efficiency profile on M. ciliaris, indicated that what was thought to be bv. medicaginis is certainly heterogeneous.  相似文献   

6.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

7.
Kawanabe T  Fujimoto R 《Plant science》2011,181(4):496-503
Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences.  相似文献   

8.
9.
The ultrastructure of septa and septum-associated septal pore caps are important taxonomic markers in the Agaricomycotina (Basidiomycota, Fungi). The septal pore caps covering the typical basidiomycetous dolipore septum are divided into three main phenotypically recognized morphotypes: vesicular-tubular (including the vesicular, sacculate, tubular, ampulliform, and globular morphotypes), imperforate, and perforate. Until recently, the septal pore cap-type reflected the higher-order relationships within the Agaricomycotina. However, the new classification of Fungi resulted in many changes including revision of existing and addition of new orders. Therefore, the septal pore cap ultrastructure of more than 325 species as reported in literature was related to this new classification. In addition, the septal pore cap ultrastructures of Rickenella fibula and Cantharellus formosus were examined by transmission electron microscopy. Both fungi have dolipore septa associated with perforate septal pore caps. These results combined with data from the literature show that the septal pore cap-type within orders of the Agaricomycotina is generally monomorphic, except for the Cantharellales and Hymenochaetales.It appears from the fungal phylogeny combined with the septal pore cap ultrastructure that the vesicular-tubular and the imperforate type both may have arisen from endoplasmic reticulum. Thereafter, the imperforate type eventually gave rise to the perforate septal pore cap-type.  相似文献   

10.
11.
12.
13.
Molecular typing at the 18S rRNA and Gp60 loci was conducted on Cryptosporidium-positive stool samples from cases collected during 2007 Western Australian and South Australian outbreaks of cryptosporidiosis. Analysis of 48 Western Australian samples identified that all isolates were C. hominis and were from five different Gp60C. hominis subtype families. The IbA10G2 subtype was most common across all age groups (37/48). In South Australia, analysis of 24 outbreak samples, identified 21 C. hominis isolates, two C. parvum isolates and one sample with both C. hominis and C. parvum. All C. hominis isolates were identified as the IbA10G2 subtype.  相似文献   

14.
Mutator (Mu) is by far the most mutagenic plant transposon. The high frequency of transposition and the tendency to insert into low copy sequences for such transposon have made it the primary means by which genes are mutagenized in maize (Zea mays L.). Mus like elements (MULEs) are widespread among angiosperms and multiple-diverged functional variants can be present in a single genome. MULEs often capture genetic sequences. These Pack-MuLEs can mobilize thousands of gene fragments, which may have had a significant impact on host genome evolution. There is also evidence that MULEs can move between reproductively isolated species. Here we present an overview of the discovery, features and utility of Mu transposon. Classification of Mu elements and future directions of related research are also discussed. Understanding Mu will help us elucidate the dynamic genome.  相似文献   

15.
WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1−/− mice lack any obvious limb or skeletal defects, Sost−/− mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost−/−; Sostdc1−/− mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost−/− and Sost−/−; Sostdc1−/− mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling.  相似文献   

16.
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.  相似文献   

17.
Torrubiella is a genus of arthropod-pathogenic fungi that primarily attacks spiders and scale insects. Based on the morphology of the perithecia, asci, and ascospores, it is classified in Clavicipitaceae s. lat. (Hypocreales), and is considered a close relative of Cordyceps s. 1., which was recently reclassified into three families (Clavicipitaceae s. str., Cordycipitaceae, Ophiocordycipitaceae) and four genera (Cordyceps s. str, Elaphocordyceps, Metacordyceps, and Ophiocordyceps). Torrubiella is distinguished morphologically from Cordyceps s. lat. mainly by the production of superficial perithecia and the absence of a well-developed stipitate stroma. To test and refine evolutionary hypotheses regarding the placement of Torrubiella and its relationship to Cordyceps s. lat., a multi-gene phylogeny was constructed by conducting ML and Bayesian analyses. The monophyly of Torrubiella was rejected by these analyses with species of the genus present in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae, and often intermixed among species of Cordyceps s. lat. The morphological characters traditionally used to define the genus are, therefore, not phylogenetically informative, with the stipitate stromata being gained and/or lost several times among clavicipitaceous fungi. Two new genera (Conoideocrella, Orbiocrella) are proposed to accommodate two separate lineages of torrubielloid fungi in the Clavicipitaceae s. str. In addition, one species is reclassified in Cordyceps s. str. and three are reclassified in Ophiocordyceps. The phylogenetic importance of anamorphic genera, host affiliation, and stipitate stromata is discussed.  相似文献   

18.
19.
20.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号