首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper treats a stochastic model for an SIR (susceptible-->infective-->removed) multitype household epidemic. The community is assumed to be closed, individuals are of different types and each individual belongs to a household. Previously obtained probabilistic and inferential results for the model are used to derive the optimal vaccination scheme. By this is meant the scheme that vaccinates the fewest among all vaccination schemes that reduce the threshold parameter below 1. This is done for the situation where all model parameters are known and also for the case where parameters are estimated from an outbreak in the community prior to vaccination. It is shown that the algorithm which chooses vaccines sequentially, at each step selecting the individual which reduces the threshold parameter the most, is not in general an optimal scheme. As a consequence, explicit characterisation of the optimal scheme is only possible in certain special cases. Two different types of vaccine responses, leaky and all-or-nothing, are considered and compared for the problems mentioned above. The methods are illustrated with some numerical examples.  相似文献   

2.
3.
A stochastic epidemic model allowing for both mildly and severely infectious individuals is defined, where an individual can become severely infectious directly upon infection or if additionally exposed to infection. It is shown that, assuming a large community, the initial phase of the epidemic may be approximated by a suitable branching process and that the main part of an epidemic that becomes established admits a law of large numbers and a central limit theorem, leading to a normal approximation for the final outcome of such an epidemic. Effects of vaccination prior to an outbreak are studied and the critical vaccination coverage, above which only small outbreaks can occur, is derived. The results are illustrated by simulations that demonstrate that the branching process and normal approximations work well for finite communities, and by numerical examples showing that the final outcome may be close to discontinuous in certain model parameters and that the fraction mildly infected may actually increase as an effect of vaccination.  相似文献   

4.
In this paper, we discuss a two-age-classes dengue transmission model with vaccination. The reason to divide the human population into two age classes is for practical purpose, as vaccination is usually concentrated in one age class. We assume that a constant rate of individuals in the child-class is vaccinated. We analyze a threshold number which is equivalent to the basic reproduction number. If there is an undeliberate vaccination to infectious children, which worsens their condition as the time span of being infectious increases, then paradoxically, vaccination can be counter productive. The paradox, stating that vaccination makes the basic reproduction number even bigger, can occur if the worsening effect is greater than a certain threshold, a function of the human demographic and epidemiological parameters, which is independent of the level of vaccination. However, if the worsening effect is to increase virulence so that one will develop symptoms, then the vaccination is always productive. In both situations, screening should take place before vaccination. In general, the presence of class division has obscured the known rule of thumb for vaccination.  相似文献   

5.
In this paper, an SEIS epidemic model is proposed to study the effect of transport-related infection on the spread and control of infectious disease. New result implies that traveling of the exposed (means exposed but not yet infectious) individuals can bring disease from one region to other regions even if the infectious individuals are inhibited from traveling among regions. It is shown that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

6.
This paper develops an impulsive SUI model of human immunodeficiency virus/acquired immunodeficiency syndrome(HIV/AIDS) epidemic for the first time to study the dynamic behavior of this model. The SUI model is described by impulsive partial differential equations. First, the well-posedness of the model is attained by the method of characteristic lines and iterative method. Secondly, the basic reproduction number R0(q,T) of the epidemic which depends on the impulsive HIV-finding period T and the HIV-finding proportion q is obtained by mathematical analysis. Our result shows that HIV/AIDS epidemic can be theoretically eradicated if we can have the suitable HIV-finding proportion q and the impulsive HIV-finding period T such that R0(q,T)<1. We also conjecture that the infection-free periodic solution of the SUI model is unstable when R0(q,T)>1.  相似文献   

7.
Summary A theorem, analogous to the continuous time Threshold Theorem of Kermack and McKendrick, is proved for a certain discrete time epidemic model. This model, in contrast to its continuous time analogue, leads to some solutions in which the total population of susceptibles may become infected in a finite time.  相似文献   

8.
An estimation of the immunity coverage needed to prevent future outbreaks of an infectious disease is considered for a community of households. Data on outbreak size in a sample of households from one epidemic are used to derive maximum likelihood estimates and confidence bounds for parameters of a stochastic model for disease transmission in a community of households. These parameter estimates induce estimates and confidence bounds for the basic reproduction number and the critical immunity coverage, which are the parameters of main interest when aiming at preventing major outbreaks in the future. The case when individuals are homogeneous, apart from the size of their household, is considered in detail. The generalization to the case with variable infectivity, susceptibility and/or mixing behaviour is discussed more briefly. The methods are illustrated with an application to data on influenza in Tecumseh, Michigan.  相似文献   

9.
The author extends the classical, stochastic, Susceptible-Infected-Removed (SIR) epidemic model to allow for disease transmission through a dynamic network of partnerships. A new method of analysis allows for a fairly complete understanding of the dynamics of the system for small and large time. The key insight is to analyze the model by tracking the configurations of all possible dyads, rather than individuals. For large populations, the initial dynamics are approximated by a branching process whose threshold for growth determines the epidemic threshold, R 0, and whose growth rate, , determines the rate at which the number of cases increases. The fraction of the population that is ever infected, , is shown to bear the same relationship to R 0 as in models without partnerships. Explicit formulas for these three fundamental quantities are obtained for the simplest version of the model, in which the population is treated as homogeneous, and all transitions are Markov. The formulas allow a modeler to determine the error introduced by the usual assumption of instantaneous contacts for any particular set of biological and sociological parameters. The model and the formulas are then generalized to allow for non-Markov partnership dynamics, non-uniform contact rates within partnerships, and variable infectivity. The model and the method of analysis could also be further generalized to allow for demographic effects, recurrent susceptibility and heterogeneous populations, using the same strategies that have been developed for models without partnerships.  相似文献   

10.
We present a novel SEIR (susceptible-exposure-infective-recovered) model that is suitable for modeling the eradication of diseases by mass vaccination or control of diseases by case isolation combined with contact tracing, incorporating the vaccine efficacy or the control efficacy into the model. Moreover, relying on this novel SEIR model and some probabilistic arguments, we have found four formulas that are suitable for estimating the basic reproductive numbers R(0) in terms of the ratio of the mean infectious period to the mean latent period of a disease. The ranges of R(0) for most known diseases, that are calculated by our formulas, coincide very well with the values of R(0) estimated by the usual method of fitting the models to observed data.  相似文献   

11.
Epidemic thresholds in network models of heterogeneous populations characterized by highly right-skewed contact distributions can be very small. When the population is above the threshold, an epidemic is inevitable and conventional control measures to reduce the transmissibility of a pathogen will fail to eradicate it. We consider a two-sex network model for a sexually transmitted disease which assumes random mixing conditional on the degree distribution. We derive expressions for the basic reproductive number (R(0)) for one and heterogeneous two-population in terms of characteristics of the degree distributions and transmissibility. We calculate interval estimates for the epidemic thresholds for stochastic process models in three human populations based on representative surveys of sexual behavior (Uganda, Sweden, USA). For Uganda and Sweden, the epidemic threshold is greater than zero with high confidence. For the USA, the interval includes zero. We discuss the implications of these findings along with the limitations of epidemic models which assume random mixing.  相似文献   

12.
Network epidemic models with two levels of mixing   总被引:1,自引:0,他引:1  
The study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e. with people chosen uniformly from the population. The behaviour of the model as the network size tends to infinity is investigated. In particular, the basic reproduction number R(0), that governs whether or not an epidemic with few initial infectives can become established is determined, as are the probability that an epidemic becomes established and the proportion of the population who are ultimately infected by such an epidemic. For the case when the infectious period is constant and all individuals in the network have the same degree, the asymptotic variance and a central limit theorem for the size of an epidemic that becomes established are obtained. Letting the rate at which individuals make casual contacts decrease to zero yields, heuristically, corresponding results for the model without casual contacts, i.e. for the standard SIR network epidemic model. A deterministic model that approximates the spread of an epidemic that becomes established in a large population is also derived. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations work well, even for only moderately sized networks, and that the degree distribution and the inclusion of casual contacts can each have a major impact on the outcome of an epidemic.  相似文献   

13.
In this paper, we develop a new approach to deal with asymptotic behavior of the age-structured homogeneous epidemic systems and discuss its application to the MSEIR epidemic model. For the homogeneous system, there is no attracting nontrivial equilibrium, instead we have to examine existence and stability of persistent solutions. Assuming that the host population dynamics can be described by the stable population model, we rewrite the basic system into the system of ratio age distribution, which is the age profile divided by the stable age profile. If the host population has the stable age profile, the ratio age distribution system is reduced to the normalized system. Then we prove the stability principle that the local stability or instability of steady states of the normalized system implies that of the corresponding persistent solutions of the original homogeneous system. In the latter half of this paper, we prove the threshold and stability results for the normalized system of the age-structured MSEIR epidemic model.   相似文献   

14.
The global dynamics of a time-delayed model with population dispersal between two patches is investigated. For a general class of birth functions, persistence theory is applied to prove that a disease is persistent when the basic reproduction number is greater than one. It is also shown that the disease will die out if the basic reproduction number is less than one, provided that the initial size of the infected population is relatively small. Numerical simulations are presented using some typical birth functions from biological literature to illustrate the main ideas and the relevance of dispersal.  相似文献   

15.
Stochastic compartmental models of the SEIR type are often used to make inferences on epidemic processes from partially observed data in which only removal times are available. For many epidemics, the assumption of constant removal rates is not plausible. We develop methods for models in which these rates are a time-dependent step function. A reversible jump MCMC algorithm is described that permits Bayesian inferences to be made on model parameters, particularly those associated with the step function. The method is applied to two datasets on outbreaks of smallpox and a respiratory disease. The analyses highlight the importance of allowing for time dependence by contrasting the predictive distributions for the removal times and comparing them with the observed data.   相似文献   

16.
17.
We propose a compartmental disease transmission model with an asymptomatic (or subclinical) infective class to study the role of asymptomatic infection in the transmission dynamics of infectious diseases with asymptomatic infectives, e.g., influenza. Analytical results are obtained using the respective ratios of susceptible, exposed (incubating), and asymptomatic classes to the clinical symptomatic infective class. Conditions are given for bistability of equilibria to occur, where trajectories with distinct initial values could result in either a major outbreak where the disease spreads to the whole population or a lesser outbreak where some members of the population remain uninfected. This dynamic behavior did not arise in a SARS model without asymptomatic infective class studied by Hsu and Hsieh (SIAM J. Appl. Math. 66(2), 627–647, 2006). Hence, this illustrates that depending on the initial states, control of a disease outbreak with asymptomatic infections may involve more than simply reducing the reproduction number. Moreover, the presence of asymptomatic infections could result in either a positive or negative impact on the outbreak, depending on different sets of conditions on the parameters, as illustrated with numerical simulations. Biological interpretations of the analytical and numerical results are also given.  相似文献   

18.
    
In this paper, we investigate structured population model of marine invertebrate whose life stage is composed of sessile adults and pelagic larvae, such as barnacles contained in a local habitat. First we formulate the basic model as an Cauchy problem on a Banach space to discuss the existence and uniqueness of non-negative solution. Next we define the basic reproduction number R0 to formulate the invasion condition under which the larvae can successfully settle down in the completely vacant habitat. Subsequently we examine existence and stability of steady states. We show that the trivial steady state is globally asymptotically stable if R0 < or = 1, whereas it is unstable if R0 > 1. Furthermore, we show that a positive (non-trivial) steady state uniquely exists if R0 > 1 and it is locally asymptotically stable as far as absolute value of R0 - 1 is small enough.  相似文献   

19.
Varicella-zoster virus (VZV) is a herpesvirus which is the known agent for causing varicella (chickenpox) in its initial manifestation and zoster (shingles) in a reactivated state. The standard SEIR compartmental model is modified to include the cycle of shingles acquisition, recovery, and possible reacquisition. The basic reproduction number R(0) shows the influence of the zoster cycle and how shingles can be important in maintaining VZV in populations. The model has the typical threshold behavior in the sense that when R(0)1, the virus persists over time and so chickenpox and shingles remain endemic.  相似文献   

20.
In this paper, we present a deterministic non-linear mathematical model for the transmission dynamics of HIV and TB co-infection and analyze it in the presence of screening and treatment. The equilibria of the model are computed and stability of these equilibria is discussed. The basic reproduction numbers corresponding to both HIV and TB are found and we show that the disease-free equilibrium is stable only when the basic reproduction numbers for both the diseases are less than one. When both the reproduction numbers are greater than one, the co-infection equilibrium point may exist. The co-infection equilibrium is found to be locally stable whenever it exists. The TB-only and HIV-only equilibria are locally asymptotically stable under some restriction on parameters. We present numerical simulation results to support the analytical findings. We observe that screening with proper counseling of HIV infectives results in a significant reduction of the number of individuals progressing to HIV. Additionally, the screening of TB reduces the infection prevalence of TB disease. The results reported in this paper clearly indicate that proper screening and counseling can check the spread of HIV and TB diseases and effective control strategies can be formulated around ‘screening with proper counseling’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号