首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
In this paper, by using the Lyapunov method, Itô’s differential formula and linear matrix inequality (LMI) approach, the global robust power-rate stability in mean square is discussed for genetic regulatory networks with unbounded time-varying delay, noise perturbations and parameter uncertainties. Sufficient conditions are given to ensure the robust power-rate stability (in mean square) of the genetic regulatory networks. Meanwhile, the criteria ensuring global power-rate stability in mean square are a byproduct of the criteria guaranteeing global robust power-rate stability in mean square. The obtained conditions are derived in terms of linear matrix inequalities (LMIs) which are easy to be verified via the LMI toolbox. An illustrative example is given to show the effectiveness of the obtained result.  相似文献   

2.
Robust stability of stochastic delayed genetic regulatory networks   总被引:1,自引:0,他引:1  
Gene regulation is an intrinsically noisy process, which is subject to intracellular and extracellular noise perturbations and environment fluctuations. In this paper, we consider the robust stability analysis problem of genetic regulatory networks with time-varying delays and stochastic perturbation. Different from other papers, the genetic regulate system considers not only stochastic perturbation but also parameter disturbances, it is in close proximity to the real gene regulation process than determinate model. Based on the Lyapunov functional theory, sufficient conditions are given to ensure the stability of the genetic regulatory networks. All the stability conditions are given in terms of LMIs which are easy to be verified. Illustrative examples are presented to show the effectiveness of the obtained results.  相似文献   

3.
4.
In this paper, the global exponential stability in Lagrange sense for genetic regulatory networks (GRNs) with SUM regulatory logic is firstly studied. By constructing appropriate Lyapunov-like functions, several criteria are presented for the boundedness, ultimate boundedness and global exponential attractivity of GRNs. It can be obtained that GRNs with SUM regulatory logic are unconditionally globally exponentially stable in Lagrange sense. These results can be applied to analyze monostable as well as multistable networks. Furthermore, to analyze the stability for GRNs more comprehensively, the existence of equilibrium point of GRNs is proved, and some sufficient conditions of the global exponential stability in Lyapunov sense for GRNs are derived. Finally two numerical examples are given to illustrate the application of the obtained results.  相似文献   

5.
6.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

7.
In this paper, the design problem of state estimator for genetic regulatory networks with time delays and randomly occurring uncertainties has been addressed by a delay decomposition approach. The norm-bounded uncertainties enter into the genetic regulatory networks (GRNs) in random ways, and such randomly occurring uncertainties (ROUs) obey certain mutually uncorrelated Bernoulli distributed white noise sequences. Under these circumstances, the state estimator is designed to estimate the true concentration of the mRNA and the protein of the uncertain GRNs. Delay-dependent stability criteria are obtained in terms of linear matrix inequalities by constructing a Lyapunov–Krasovskii functional and using some inequality techniques (LMIs). Then, the desired state estimator, which can ensure the estimation error dynamics to be globally asymptotically robustly stochastically stable, is designed from the solutions of LMIs. Finally, a numerical example is provided to demonstrate the feasibility of the proposed estimation schemes.  相似文献   

8.
This paper is concerned with the stability analysis for neural networks with interval time-varying delays and parameter uncertainties. An approach combining the Lyapunov-Krasovskii functional with the differential inequality and linear matrix inequality techniques is taken to investigate this problem. By constructing a new Lyapunov-Krasovskii functional and introducing some free weighting matrices, some less conservative delay-derivative-dependent and delay-derivative-independent stability criteria are established in term of linear matrix inequality. And the new criteria are applicable to both fast and slow time-varying delays. Three numerical examples show that the proposed criterion are effective and is an improvement over some existing results in the literature.  相似文献   

9.
Robust stability of genetic regulatory networks with distributed delay   总被引:1,自引:1,他引:1  
This paper investigates robust stability of genetic regulatory networks with distributed delay. Different from other papers, distributed delay is induced. It says that the concentration of macromolecule depends on an integral of the regulatory function of over a specified range of previous time, which is more realistic. Based on Lyapunov stability theory and linear matrix inequality (LMI), sufficient conditions for genetic regulatory networks to be global asymptotic stability and robust stability are derived in terms of LMI. Two numerical examples are given to illustrate the effectiveness of our theoretical results.  相似文献   

10.
Based on a non-equilibrium mechanism for spatial pattern formation we study how position information can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problems of domain formation and proportion regulation in the presence of noise, as well as in the presence of cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. Proportion regulation is scalable with system size and leads to sharp, precisely localized boundaries of gene expression domains, even for large numbers of cells. A detailed analysis of noise-induced dynamics, using a mean-field approximation, shows that noise in gene expression states stabilizes (rather than disrupts) the spatial pattern in the presence of cell movements, both for stationary as well as growing systems. Finally, we discuss how this mechanism could be realized in the highly dynamic environment of growing tissues in multicellular organisms.  相似文献   

11.
The state estimation problem for discrete-time recurrent neural networks with both interval discrete and infinite-distributed time-varying delays is studied in this paper, where interval discrete time-varying delay is in a given range. The activation functions are assumed to be globally Lipschitz continuous. A delay-dependent condition for the existence of state estimators is proposed based on new bounding techniques. Via solutions to certain linear matrix inequalities, general full-order state estimators are designed that ensure globally asymptotic stability. The significant feature is that no inequality is needed for seeking upper bounds for the inner product between two vectors, which can reduce the conservatism of the criterion by employing the new bounding techniques. Two illustrative examples are given to demonstrate the effectiveness and applicability of the proposed approach.  相似文献   

12.
This paper is pertained with the synchronization problem for an array of coupled discrete-time complex networks with the presence of both time-varying delays and parameter uncertainties. The time-varying delays are considered both in the network couplings and dynamical nodes. By constructing suitable Lyapunov–Krasovskii functional and utilizing convex reciprocal lemma, new synchronization criteria for the complex networks are established in terms of linear matrix inequalities. Delay-partitioning technique is employed to incur less conservative results. All the results presented here not only depend upon lower and upper bounds of the time-delay, but also the number of delay partitions. Numerical simulations are rendered to exemplify the effectiveness and applicability of the proposed results.  相似文献   

13.
主要讨论了一类混合时滞的非线性耦合神经网络的同步问题.同时,考虑随机扰动以及参数的切换由某个马尔可夫链所确定等方面对其的影响.文中通过构造新的Lyapunov-Krasovskii泛函,运用线性矩阵不等式(LMI)技术并结合Kronecker积来获得神经网络全局同步的充分性判据.由于这样得到的判据是LMI形式,因此可以由数学软件Matlab的LMI Toolbox对所获得的判据进行有效的验证和求解.此外,本文中我们对细胞激活函数做了更为一般的假设,从而使结论在LMI下可以减少保守性.  相似文献   

14.
In this paper, a nonlinear model for genetic regulator networks (GRNs) with SUM regulatory logic is presented. Four sufficient and necessary conditions of global asymptotical stability and global exponential stability for the equilibrium point of the GRNs are proposed, respectively. Specifically, three weak sufficient conditions and corresponding corollaries are derived by using comparing theorem and Dini derivative method. Then, a famous GRN model is used as the example to illustrate the effectiveness of our theoretical results. Comparing to the results in the previous literature, some novel ideas, study methods and interesting results are explored.  相似文献   

15.
The robust asymptotic stability analysis for uncertain BAM neural networks with both interval time-varying delays and stochastic disturbances is considered. By using the stochastic analysis approach, employing some free-weighting matrices and introducing an appropriate type of Lyapunov functional which takes into account the ranges for delays, some new stability criteria are established to guarantee the delayed BAM neural networks to be robustly asymptotically stable in the mean square. Unlike the most existing mean square stability conditions for BAM neural networks, the supplementary requirements that the time derivatives of time-varying delays must be smaller than 1 are released and the lower bounds of time varying delays are not restricted to be 0. Furthermore, in the proposed scheme, the stability conditions are delay-range-dependent and rate-dependent/independent. As a result, the new criteria are applicable to both fast and slow time-varying delays. Three numerical examples are given to illustrate the effectiveness of the proposed criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号