首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cells in the astroglial lineage are neural stem cells   总被引:1,自引:0,他引:1  
A common assumption of classical neuroscience was that neurons and glial cells were derived from separate pools of progenitor cells and that, once development was completed, no new neurons were produced. The subsequent disproving of the “no new neuron” dogma suggested that ongoing adult neurogenesis was supported by a population of multipotent neural stem cells. Two germinal regions within the adult mammalian brain were shown to contain neural progenitor cells: the subventricular zone (SVZ) along the walls of the lateral ventricles, and the subgranular zone (SGZ) within the dentate gyrus of the hippocampus. Surprisingly, when the primary progenitors (stem cells) of the new neurons in these regions were identified, they exhibited structural and biological markers of astrocytes. The architecture of these germinal regions and the pattern of division of neural stem cells have raised fundamental questions about the mechanism of adult neurogenesis. This review describes studies on the origin of adult neural stem cells, the features distinguishing them from astrocytes in non-germinal regions, and the control mechanisms of the proliferation and differentiation of these cells. Astrocytic adult neural stem cells are part of a developmental lineage extending from the neuroepithelium to radial glia to germinal astrocytes. Adult neural stem cells appear to be strongly influenced by their local microenvironment, while also contributing significantly to the architecture of these germinal zones. However, environment alone does not seem to be sufficient to induce non-germinal astrocytes to behave as neural stem cells. Although emerging evidence suggests that significant heterogeneity exists within populations of germinal zone astrocytes, the way that these differences are encoded remains unclear. The further characterization of these cells should eventually provide a body of knowledge central to the understanding of brain development and disease. Work in the Alvarez-Buylla laboratory is supported by grants from the NIH and the Goldhirsh Foundation and by a gift from John and Frances Bowes. Rebecca Ihrie is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. Arturo Alvarez-Buylla holds the Heather and Melanie Muss Endowed Chair in Neurosurgery.  相似文献   

2.
Oligodendrocyte progenitor cells (OPCs) were first described more than two decades ago. Novel labeling techniques have shown them to be cells with more than just progenitor functions, with their classification as a fourth glial cell type in addition to astrocytes, oligodendrocytes, and microglial cells. Another term used for this cell type is polydendrocytes, owing to both their morphology and to the evolving knowledge about their diverse functions. Recently, an exclusive hallmark of neurons—the generation of action potentials—became debatable, because a subset of polydendrocytes was reported to generate action potentials in response to adequate stimuli. The new technique of inducible reporter gene expression has brought new insights into the fate and function of polydendrocytes. In recent studies, so-called “silenced” OPCs were detected in cortical tissue, and which underwent proliferation with subsequent cell cycle exit, but without any signs of differentiation. Within this review, we focus on the identification of this new subset of polydendrocytes and their possible functions within cortical networks.  相似文献   

3.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein considered to be the best astroglial marker. However, the predominant cell population in adult human brain tissue cultures does not express GFAP; these cells have been termed “glia-like” cells. The basic question about histological origin of adult human brain cultures remains unanswered. Some authors showed that “glia-like” cells in adult human brain cultures might be of non-glial origin. We examined primary explant tissue cultures derived from 70 adult human brain biopsies. Within first 5–10 days approximately 5–10% of the small explants became attached. Outgrowing cells were mostly flat cells. These cells formed confluent layer over 3–6 weeks in culture. At confluence the cultures contained 2–5% of microglial cells, 0.1% GFAP-positive astrocytes, less than 0.01% oligodendrocytes and 95–98% GFAP-negative “glia-like” cells. This population of flat “glia-like” cells was positively stained for vimentin, fibronectin, and 20–30% of these cells stained for nestin. Our findings revealed that 1 mM dibutyryl-cAMP addition, in serum free conditions, induced a reversible stellation in 5-10% of the flat “glia-like” cells but did not induce the expression of GFAP or nestin in morphologically changed stellate cells. These results demonstrate that “glia-like” cells in primary adult human brain cultures constitute heterogeneous cell populations albeit with similar morphological features. Two distinct subpopulations have been shown: (i) the one immunostained for nestin; and (ii) the other reactive for dibutyryl-cAMP treatment.  相似文献   

4.
Glial cells are the most abundant cells in the human brain and have long been considered as passive supporting cells for neurons. In contrast to the extensive studies on various neuronal functions in the nervous system, we still have limited knowledge about glial cells. Recently a number of pioneering studies have provided convincing evidence that glia play active roles in development and function of the central nervous system. This review discusses recent advances in our understanding of the molecular mechanisms underlying glial cell differentiation. We then highlight some of the novel findings about glial function, i.e. the role of glia in synaptogenesis and the intricate relationship between astrocytes and adult neural stem cells. Finally, we summarize the emerging studies that implicate abnormalities in the formation or maintenance of glia leading to severe brain diseases, such as Alexander disease, glioblastoma and multiple sclerosis, and potential therapeutic strategies to tackle these diseases.  相似文献   

5.
Brain endothelial cells and the glio-vascular complex   总被引:2,自引:1,他引:1  
We present and discuss the role of endothelial and astroglial cells in managing the blood-brain barrier (BBB) and aspects of pathological alterations in the BBB. The impact of astrocytes, pericytes, and perivascular cells on the induction and maintenance of the gliovascular unit is largely unidentified so far. An understanding of the signaling pathways that lie between these cell types and the endothelium and that possibly are mediated by components of the basal lamina is just beginning to emerge. The metabolism for the maintenance of the endothelial barrier is intimately linked to and dependent on the microenvironment of the brain parenchyma. We report the structure and function of the endothelial cells of brain capillaries by describing structures involved in the regulation of permeability, including transporter systems, caveolae, and tight junctions. There is increasing evidence that caveolae are not only vehicles for endo- and transcytosis, but also important regulators of tight-junction-based permeability. Tight junctions separate the luminal from the abluminal membrane domains of the endothelial cell (“fence function”) and control the paracellular pathway (“gate function”) thus representing the most significant structure of the BBB. In addition, the extracellular matrix between astrocytes/pericytes and endothelial cells contains numerous molecules with inherent signaling properties that have to be considered if we are to improve our knowledge of the complex and closely regulated BBB. Any work of our own cited in this review was supported by grants from the Deutsche Krebshilfe (to H.W.), the Deutsche Forschungsgemeinschaft (to H.W.), and the Hertie-Foundation (to H.W. and to Britta Engelhardt, Bern, Switzerland).  相似文献   

6.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

7.
Ming GL  Song H 《Neuron》2011,70(4):687-702
Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade.  相似文献   

8.
Astrocytes are glial cells in the central nervous system (CNS) that play key roles in brain physiology, controlling processes, such as neurogenesis, brain energy metabolism and synaptic transmission. Recently, immune functions have also been demonstrated in astrocytes, influencing neuronal survival in the course of neuroinflammatory pathologies. In this regard, PKCepsilon (PKCε) is a protein kinase with an outstanding role in inflammation. Our previous findings indicating that PKCε regulates voltage-dependent calcium channels as well as morphological stellation imply that this kinase controls multiple signalling pathways within astrocytes, including those implicated in activation of immune functions. The present study applies proteomics to investigate new protein targets of PKCε in astrocytes. Primary astrocyte cultures infected with an adenovirus that expresses constitutively active PKCε were compared with infection controls. Two-dimensional gel electrophoresis clearly detected 549 spots in cultured astrocytes, and analysis of differential protein expression revealed 18 spots regulated by PKCε. Protein identification by mass spectrometry (nano-LC–ESI-MS/MS) showed that PKCε targets molecules with heterogeneous functions, including chaperones, cytoskeletal components and proteins implicated in metabolism and signalling. These results support the notion that PKCε is involved in astrocyte activation; also suggesting that multiple astrocyte-dependent processes are regulated by PKCε, including those associated to neuroinflammation.  相似文献   

9.
10.
11.
The adult mammal brain is mostly considered as non-neurogenic, except in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus, where ongoing neurogenesis occurs. However, anti-neurogenic influences can be removed in pathological conditions or after specific injury. That is what happens in a model of unilateral vestibular neurectomy (UVN) that mimics human pathology in adult cats. We showed for the first time that a UVN promoted an intense reactive cell proliferation in the deafferented vestibular nuclei located in the brainstem. The new cells survived up to one month, differentiated into glial cells - microglia or astrocytes - or GABAergic neurons, so highlighting a GABAergic neurogenesis. Surprisingly, we further showed that post-UVN reactive cell proliferation contributed successfully to fine restoration of vestibular posturo-locomotor functions. In conclusion, these pioneering studies bring new pieces of a promising puzzle in both stem cell and vestibular therapy domains.  相似文献   

12.
The major role of radial glial cells in neuronal development is to provide support and guidance for neuronal migration. In vitro, neurons, astrocytes and oligodendrocytes have also been generated from neural stem cells and embryonic stem cells, but the generation of radial glial cells in vitro has not yet been reported. Since radial glial cells can lead to neurons and astrocytes during brain development, neurogenesis and gliogenesis of stem cells in vitro may at least in part also utilize the same mechanisms. To test this hypothesis, we utilized five different clones of embryonic (ES) and embryonal carcinoma (EC) stem cell lines to investigate the differentiation of radial glial cells during in vitro neural differentiation. Here, we demonstrate that radial glial cells can be generated from ES/EC cell lines. These ES/EC cell‐derived radial glial cells are similar in morphology to radial glial cells in vivo. They also express several cytoskeletal markers that are characteristics of radial glial cells in vivo. The processes of these in vitro‐generated radial glial cells are organized into scaffolds that appear to support the migration of newly generated neurons in culture. Like radial glial cells in vivo, they appear to differentiate subsequently into astrocytes. Differentiation of radial glial cells may be a common pathway during in vitro neural differentiation of ES cells. This novel in vitro model system may facilitate the investigation of regulation of radial glial cell differentiation and its biological function. Acknowledgements: Supported by USPHS Grant NS11853 and a grant from the Children's Medical Research Foundation.  相似文献   

13.
An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.  相似文献   

14.
神经再生(Neurogenesis)是指具有自我更新能力的神经干细胞(Neural Stem Cells,NSCs)经过迁移、增殖,最终分化为具有特定功能的神经细胞的过程。以往人们认为,神经再生只存在于胚胎期或外周神经系统,近几年发现,在成年动物的中枢神经系统也存在神经再生,研究发现侧脑室室管膜下区(SVZ)是神经再生发生的主要区域之一,产生新的神经元和神经胶质细胞通过RMS通路运输至嗅球进而对嗅觉损伤部分进行修复。本文主要从成年神经再生的发展、神经再生与疾病的关系、神经再生的过程等方面进行综述。  相似文献   

15.
Summary 1. The blood–brain barrier (BBB) is formed by brain capillary endothelial cells (ECs). There are various cell types, in particular astrocytes, but also pericytes and neurons, located in close vicinity to the capillary ECs which may influence formation and function of the BBB. Based on this consideration, this paper discusses various aspects of the influence of the surrounding cells on brain capillary ECs with special focus on the role of astrocytes.2. Based on the morphology of the BBB, important aspects of brain EC functions are summarized, such as transport functions and maintenance of low paracellular permeability. Moreover, various facets are discussed with respect to the influence of astrocytes, pericytes, microglia, and neurons on the BBB. Data on the role of glial cells in the ontogenesis of the BBB are presented subsequently. The knowledge on this subject is far from being complete, however, these data imply that the neural/neuronal environment rather than glial cells may be of importance in the maturation of the barrier.3. The role of glial cells in the induction and maintenance of the BBB is discussed under physiological as well as pathological conditions. Although the literature presents manifold evidence for a great variety of effects induced by astroglia, there are also many controversies, which may result from different cellular models and experimental conditions used in the respective studies. Numerous factors secreted by astrocytes have been shown to induce a BBB phenotype. On the molecular level, increased expression of barrier-relevant proteins (e.g., tight junction proteins) is documented in the presence of astrocyte-derived factors, and many studies demonstrate the improvement of physiological parameters, such as increased transendothelial resistance and decreased paracellular permeability, in different in vitro models of the BBB. Moreover, one has to take into account that the interaction of brain ECs and astrocytes is bi-directional, and that the other cell types surrounding the brain microvasculature also contribute to BBB function or dysfunction, respectively.4. In conclusion, it is expected that the present and future research focused on molecular mechanisms and signaling pathways will produce new and exciting insights into the complex network of BBB regulation: the cornerstone is laid.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

16.
Perivascular astrocyte end feet closely juxtapose cerebral blood vessels to regulate important developmental and physiological processes including endothelial cell proliferation and sprouting as well as the formation of the blood‐brain barrier (BBB). The mechanisms underlying these events remain largely unknown due to a lack of experimental models for identifying perivascular astrocytes and distinguishing these cell types from other astroglial populations. Megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) is a transmembrane protein that is expressed in perivascular astrocyte end feet where it controls BBB development and homeostasis. On the basis of this knowledge, we used T2A peptide‐skipping strategies to engineer a knock‐in mouse model in which the endogenous Mlc1 gene drives expression of enhanced green fluorescent protein (eGFP), without impacting expression of Mlc1 protein. Analysis of fetal, neonatal and adult Mlc1‐eGFP knock‐in mice revealed a dynamic spatiotemporal expression pattern of eGFP in glial cells, including nestin‐expressing neuroepithelial cells during development and glial fibrillary acidic protein (GFAP)‐expressing perivascular astrocytes in the postnatal brain. EGFP was not expressed in neurons, microglia, oligodendroglia, or cerebral vascular cells. Analysis of angiogenesis in the neonatal retina also revealed enriched Mlc1‐driven eGFP expression in perivascular astrocytes that contact sprouting blood vessels and regulate blood‐retinal barrier permeability. A cortical injury model revealed that Mlc1‐eGFP expression is progressively induced in reactive astrocytes that form a glial scar. Hence, Mlc1‐eGFP knock‐in mice are a new and powerful tool to identify perivascular astrocytes in the brain and retina and characterize how these cell types regulate cerebral blood vessel functions in health and disease.  相似文献   

17.
17β-estradiol is known to exert neurotrophic and neuroprotective effects through classical estrogen receptors [ERs], ERα and ERβ, on a variety of cell types either by genomic or non-genomic actions. The actions of estradiol on glial cells are important to maintain metabolic functions of the nervous system. Astrocytes are considered to be active participants in brain activity because of their ability to release growth factors, including neurotrophins. Present in vitro studies show that 17β-estradiol modulates NGF and BDNF expression in time-dependent manner and ERK acts as secondary messenger for estradiol’s action. 17β-estradiol is involved in survival of cortical astrocytes. In conclusion, this study indicates vital role of ERβ mediated ERK signalling for regulation of NGF and BDNF expression along with cell viability of cortical astrocytes which further confirms the role of ERs, particularly ERβ in glial cells’ functions and viability.  相似文献   

18.
Purinergic transmission is one of the most ancient and widespread extracellular signalling systems. In the brain, purinergic signalling plays a unique role in integrating neuronal and glial cellular circuits, as virtually every type of glial cell possesses receptors to purines and pyrimidines. These receptors, represented by metabotropic P1 adenosine receptors, metabotropic P2Y purinoceptors and ionotropic P2X purinoceptors, control numerous physiological functions of glial cells and are intimately involved in virtually every form of neuropathology. In this essay, we provide an in depth overview of purinoceptor distribution in two types of CNS glia—in astrocytes and oligodendrocytes—and discuss their physiological and pathophysiological roles. An erratum to this article can be found at  相似文献   

19.
Atrial natriuretic peptide (ANP) was originally isolated from cardiac atria, and has potent natriuretic, diuretic, and vasorelaxant properties. It has been localized in neurons and astrocytes in the cerebral cortex and the white matter. We hypothesize that glial ANP may contribute to the regulation of cerebral blood flow in brain infarction. In order to elucidate this possible role, the immunohistochemistry of ANP was studied in cases of brain infarction and in other cases of brain trauma for comparison. A statistically significant increase in the number of ANP-immunoreactive glial cells (mainly astrocytes) was observed in the white matter surrounding the brain infarction compared with the intact area. No statistically significant increase in ANP-immunoreactive glial cell number was observed in the cerebral white matter from brain haemorrhage, contusion and control cases. Our results indicate that glial ANP may increase in number in brain infarction, and that it may be involved in the regulation of the cerebral blood flow in the infarcted area.  相似文献   

20.

Astrocytes make up 20–40% of glial cells within the central nervous system (CNS) and provide several crucial functions, ranging from metabolic and structural support to regulation of synaptogenesis and synaptic transmission. Although these cells are morphologically and functionally complex, astrocytes have been historically regarded as homogenous cell populations and studied as one population of cells. Fortunately, recent evidence in RNA profiling and imaging data has begun to refute this view. These studies suggest heterogeneity of astrocytes across brain regions, differing in many aspects such as morphology, function, physiological properties, developmental origins, and response to disease. Increased understanding of astrocyte heterogeneity is critical for investigations into the function of astrocytes in the brain and neuro–glia interactions. Furthermore, insights into astrocyte heterogeneity can help better understand their role in neurological disorders and potentially produce novel approaches to treating these diseases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号