首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives: There has been uncertainty in the adult body composition literature about whether fat mass (FM) or fat free mass is a better predictor of bone mineral content and bone mineral density. This issue has recently also been raised in the pediatric literature. Based on suggested skeletal muscle–bone relationships, this study tested the hypothesis that in children and adolescents lean tissue mass (LTM) is a better predictor of total bone mineral content (TBMC) than is FM. Research Methods and Procedures: Subjects were 133 Italian children and adolescents, 5 to 17 years of age, undergoing a routine medical screen. FM (kilograms), LTM (kilograms), and TBMC (kilograms) were measured by DXA. Multiple regression analyses tested the independent association of FM and LTM with bone mineral content. Results: Regression analyses, adjusting for pubertal status and other covariates, showed that FM and LTM were independently associated with TBMC. These associations were similar for boys and girls. TBMC was more strongly associated with LTM than FM. Discussion: These observations support the hypothesis that in children and adolescents a close association exists between LTM, a measure of skeletal muscle, and skeletal characteristics.  相似文献   

2.
Effects of the electromagnetic fields on living bodies, bones in particular, are among the relevant issues of contemporary life. In this study, we report the influences of 50 Hz and 0 Hz (static) electric fields (EF), on intact rat bones, as evaluated by dual energy X-ray absorbtion (DEXA) measurements on bone content and density when these animals (n = 27) are continuously exposed in utero and neonatally to EFs (10 kV/m) 14 days before and 14 days after their birth, for 28 days in total. Differences between 50 Hz EF and static EF groups are found to be significant (95% confidence level) for total bone mineral content (BMC), TBMC (P = .002). Differences between 50 Hz and control groups are found to be significant for total bone mineral density (BMD), TBMD (P = .002), lumbar BMC, LBMC (P = .023), and TBMC (P = .001). Differences between static EF and control groups are found to be significant for femoral BMD, FBMD (P = .009), TBMD (P = .002), LBMC (P = .001), and TBMC (P = .001). Note that TBMC parameters are jointly significant for all differences between the three groups of test animals. These results have shown that both static and 50 Hz EFs influence the early development of rat bones. However, the influence of static EFs is more pronounced than that of the 50 Hz field.  相似文献   

3.
Objective: To evaluate the precision and accuracy of dual‐energy X‐ray absorptiometry (DXA) for the measurement of total‐bone mineral density (TBMD), total‐body bone mineral (TBBM), fat mass (FM), and bone‐free lean tissue mass (LTM) in mice. Research Methods and Procedures: Twenty‐five male C57BL/6J mice (6 to 11 weeks old; 19 to 29 g) were anesthetized and scanned three times (with repositioning between scans) using a peripheral densitometer (Lunar PIXImus). Gravimetric and chemical extraction techniques (Soxhlet) were used as the criterion method for the determination of body composition; ash content was determined by burning at 600°C for 8 hours. Results: The mean intraindividual coefficients of variation (CV) for the repeated DXA analyses were: TBMD, 0.84%; TBBM, 1.60%; FM, 2.20%; and LTM, 0.86%. Accuracy was determined by comparing the DXA‐derived data from the first scan with the chemical carcass analysis data. DXA accurately measured bone ash content (p = 0.942), underestimated LTM (0.59 ± 0.05g, p < 0.001), and overestimated FM (2.19 ± 0.06g, p < 0.001). Thus, DXA estimated 100% of bone ash content, 97% of carcass LTM, and 209% of carcass FM. DXA‐derived values were then used to predict chemical values of FM and LTM. Chemically extracted FM was best predicted by DXA FM and DXA LTM [FM = ?0.50 + 1.09(DXA FM) ? 0.11(DXA LTM), model r2 = 0.86, root mean square error (RMSE) = 0.233 g] and chemically determined LTM by DXA LTM [LTM = ?0.14 + 1.04(DXA LTM), r2 = 0.99, RMSE = 0.238 g]. Discussion: These data show that the precision of DXA for measuring TBMD, TBBM, FM, and LTM in mice ranges from a low of 0.84% to a high of 2.20% (CV). DXA accurately measured bone ash content but overestimated carcass FM and underestimated LTM. However, because of the close relationship between DXA‐derived data and chemical carcass analysis for FM and LTM, prediction equations can be derived to more accurately predict body composition.  相似文献   

4.
During the 1990s, interest in the effects of growth hormone deficiency (GHD) in adults increased, and several studies were performed to evaluate the effects of growth hormone (GH) substitution therapy in these patients. Because adults with GHD have reduced bone mineral density (BMD) and an increased risk of fractures, the effects of GH replacement therapy on bone metabolism have been evaluated in long-term studies. A universal finding is that the serum and urinary levels of biochemical bone markers increase during GH substitution therapy, and these increases are dose dependent. After years of GH substitution therapy, the levels of biochemical bone markers remain elevated, according to some studies, whereas other studies report that these levels return to baseline. BMD of the spine, hip and forearm increase after 18-24 months of treatment. Bone mineral content (BMC) increases to a greater extent than BMD, because the areal projection of bone also increases. This difference could be caused by increased periosteal bone formation, but a measurement artefact resulting from the use of dual-energy X-ray absorptiometry cannot be excluded as a possible explanation. One study of GH-deficient adults found that, after 33 months of GH treatment, BMD and BMC increased to a greater extent in men with GHD than in women. There is also a gender difference in the increases in serum levels of insulin-like growth factor I and biochemical bone markers during GH treatment. The reason for these findings is unknown, and the role of sex steroids in determining the response to GH therapy remains to be fully elucidated.  相似文献   

5.
In the spinal cord injury (SCI) population, a relationship between adiposity and leg bone has not been reported, nor one between serum estradiol and leg bone mass. A cross-sectional, comparative study of 10 male pairs of monozygotic twins discordant for SCI was performed. Relationships were determined among bone mineral density (BMD), bone mineral content (BMC), lean mass, fat mass, and serum sex steroids. In the twins with SCI, significant relationships were evident between leg BMD or BMC with total body percent fat (r2= 0.49, P < 0.05; r2= 0.45, P = 0.05), leg fat mass (r2 = 0.76, P < 0.0005; r2= 0.69, P = 0.005), and serum estradiol (r2= 0.40, P = 0.05; r2= 0.37, P = 0.05). By stepwise regression analysis, in the twins with SCI, leg fat mass was found to be the single most significant predictor of leg BMD or BMC (F = 12.01, r2= 0.76, P = 0.008; F = 50.87, r2= 0.86, P < 0.0001). In the able-bodied twins, leg lean mass correlated with leg BMD and BMC (r2= 0.58, P = 0.01; r2= 0.87, P = 0.0001). By use of within-pair differences, significant correlations were found for leg lean mass loss with leg BMD loss (r2= 0.56, P = 0.01) or leg BMC loss (r2= 0.64, P = 0.0005). In conclusion, in twins with SCI, significant correlations were observed between fat mass and leg BMD or BMC as well as between serum estradiol values and leg BMD. The magnitude of the leg muscle mass loss was correlated with the magnitude of bone loss.  相似文献   

6.
Dual-energy X-ray absorptiometry (DXA) is the reference method for the measurement of bone mineral mass at different skeletal sites. It has been widely used in recent years to assess the effects of growth hormone (GH) treatment on bone metabolism. In normal individuals, bone mineral content (BMC) and density (BMD), as assessed using DXA, correlate with body size. Therefore, using DXA in patients with congenital GH deficiency (GHD), who have a smaller body frame, would be expected to result in lower bone mass. Thus, comparisons with reference data derived from populations of normal body size are invalid. The evaluation of the effects of GH administration should take into account the possible effects of GH on bone size, not only in children, but also in adults. The enlargement of bone, due to stimulation of the periosteal apposition, may partially mask an increase in BMC, resulting in little or no change in BMD. The ability of GH to affect bone area therefore requires analysis of the possible changes in bone area and BMC, as well as BMD. This issue has been poorly handled in the studies published to date. Lastly, the acceleration of bone turnover induced by GH leads to an increase in bone remodelling space, which in turn is associated with a reduction in BMC and BMD, independent of the net balance between breakdown and formation in each metabolic unit. This bone loss is completely reversible when the remodelling space returns to previous levels. This phenomenon must be taken into account when analysing the effects of GH treatment on bone mass, because a net gain in bone mass may be found in long-term GH treatment or after GH discontinuation, even if bone loss was evident during the first 6 months of treatment. In conclusion, the interpretation of bone density data in patients with GHD, and after GH administration, should take into account some of the methodological aspects of bone densitometry, as well as the specific actions of GH on bone metabolism and body composition.  相似文献   

7.
OBJECTIVE: The present investigation was aimed to evaluate the effect of subclinical hypothyroidism and obesity on bone mineral content (BMC) in different body segments. METHODS: Thirty-two premenopausal women (age: 37 +/- 9.9 years), with a wide range in body mass index (BMI), were studied. Subclinical hypothyroidism was defined by a basal TSH > or = 4 microU/l and/or a TRH-stimulated peak > or = 30 microU/l. For each subject, weight, height, BMI (weight/height(2)) and the waist/hip ratio were measured. Total BMC, total bone mineral density (BMD), leg BMC, leg BMD, trunk BMC, trunk BMD, arm BMC and arm BMD were determined using dual-energy X-ray absorptiometry. Thyroid function (basal and TRH-stimulated TSH, free T(3) and free T(4)) were determined from fasting blood samples for all subjects. RESULTS: Anova was conducted within all the groups to observe the effect of thyroid status and/or obesity on BMC and BMD. There was no statistical difference for age. Total BMC was affected by obesity (p < 0.05) but not by thyroid status, BMD of the legs was significantly influenced both by thyroid function and obesity (p < 0.01); total BMD was affected by hypothyroid status (p < 0.05). A direct relationship between leg BMD and TSH was demonstrated. CONCLUSION: Subclinical thyroid hypofunction and obesity seem to affect BMD differently in the body segments. An influence of gravitational force seems necessary in order to make evident the effect of subclinical hypothyroidism on bone. A condition of subclinical hypothyroidism should be considered when evaluating subjects for osteoporosis, since a BMD measured at the femoral neck may induce underestimation of initial osteoporosis.  相似文献   

8.
Severe growth hormone (GH) deficiency (GHD) induces a well-defined clinical entity encompassing, amongst the most reported features, abnormalities of body composition, in particular increased fat mass, especially truncal, and reduced lean body mass. The results from virtually all treatment studies are in agreement that GH replacement improves the body composition profile of GHD patients by increasing lean body mass and reducing fat mass. More recently, the observations have been extended to adults with partial GHD, defined by a peak GH response to insulin-induced hypoglycaemia of 3-7 microg/l. These patients exhibit abnormalities of body composition similar in nature to those described in adults with severe GHD; these include an increase in total fat mass of around 3.5 kg and a reduction of lean body mass of around 5.5 kg. The increase in fat mass is predominantly distributed within the trunk. The degree of abnormality of body composition is intermediate between that of healthy subjects and that of adults with GHD. The impact of GH replacement on body composition in adults with GH insufficiency, although predictable, has not been formally documented. The skeleton is another biological endpoint affected by GH status: in adults with severe GHD, low bone mass has been reported using dual energy x-ray absorptiometry (DEXA) and other quantitative methodologies. The importance of low bone mass, in any clinical setting, is as a surrogate marker for the future risk of fracture. Several retrospective studies have documented an increased prevalence of fractures in untreated GHD adults. Hypopituitary adults with severe GHD have reduced markers of bone turnover which normalize with GH replacement, indicating that GH, directly or via induction of insulin-like growth factor-I, is intimately involved in skeletal modelling. Whilst the evidence that GH plays an important role in the acquisition of bone mass during adolescence and early adult life is impressive, the impact of GHD acquired later in adulthood is less clear. Recently we examined the relationship between bone mineral density (BMD) and age in 125 untreated adults with severe GHD using DEXA. A significant positive correlation was observed between BMD (z-scores) and age at all skeletal sites studied. Overall, few patients, except those aged less than 30 years, had significantly reduced bone mass (i.e. a BMD z-score of less than -2); correction of BMD to provide a pseudo-volumetric measure of BMD suggested that reduced stature of the younger patients may explain, at least in part, this higher frequency of subnormal BMD z-scores. Despite normal BMD, however, an increase in fracture prevalence may still be observed in elderly GHD adults as a consequence of increased falls related to muscle weakness and visual field defects.  相似文献   

9.
Growth hormone (GH) exerts important influences on bone metabolism during lifespan. During childhood, GH is a major determinant of acquisition of bone mass and in adult life, GH partly determines the rate of bone remodelling and therefore influences maintenance of bone mineral density (BMD). Insights into the importance of GH in these respects may be obtained by studies of BMD and indices of bone remodelling in GH deficiency (GHD) of adult-onset and childhood-onset. Adult-onset GHD, usually accompanied by other features of hypopituitarism, may be associated with osteopenia and an increased fracture risk. Postulated mechanisms include GHD and gonadal steroid deficiency of unknown duration; glucocorticoid and thyroxine replacement do not appear to exert a major role. GH replacement in adult-onset GHD results in an early increment in indices of bone remodelling which persists for up to 5 years; BMD increases by 0.5-1.0 SD in males and stabilizes in females over this time period. In adolescents with GHD who traditionally discontinue GH at completion of linear growth, BMD is substantially lower than peak bone mass for a young adult population. Studies addressing the effects of continuation of GH after achievement of final height are currently underway and will provide insights into the possible need to continue GH into adult life. Such studies may confirm a role for GH in promoting continued accrual of bone mass and thereby demonstrate that cessation of GH at achievement of final height, by limiting peak bone mass, may predispose to clinically significant osteoporosis in later life. In addition to the potential importance of GH for achievement of peak bone mass, there may be a superimposed accelerated loss of BMD with advancing age similar to the situation observed in adult-onset GHD. To date, this has been difficult to assess in adult GHD of childhood-onset because the relative contributions of low peak bone mass and increased loss of bone in later life could not be distinguished.  相似文献   

10.
Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle.  相似文献   

11.
BACKGROUND: Only few previous studies have assessed the effects of long-term growth hormone (GH) replacement therapy on bone mineral density (BMD) in adult patients with GH deficiency. The aim of this study was to investigate the effects of long-term GH therapy on bone metabolism and BMD. MATERIAL AND METHODS: At the start of the study, 20 adults with GH deficiency were randomized to receive either GH, 0.25 IU x kg per week, or placebo. After 6 months, patients in the placebo group were switched to GH therapy, and they received GH for a further 18 months. Of the 20 patients, 14 were male and 6 female with GH deficiency of adult-onset. The mean age of the patients at the start of the study was 40.3+/-10.9 years and the duration of GH deficiency was 10.6+/-6.4 years. Patients deficient in pituitary hormones other than GH had been receiving stable replacement doses of appropriate hormones for at least 6 months before the start of the study. Rates of bone metabolism were assessed by measuring calcium, phosphate, alkaline phosphatase, calciuria, phosphaturia and osteocalcin. BMD was measured by dual X-ray absorptiometry. Body composition was calculated from measurements of bioelectrical impedance. RESULTS: Before GH treatment, BMD in the femoral neck was lower in patients than in controls. The rate of bone resorption markers increased significantly after 6 months and remained stable during the whole treatment period. BMD significantly increased in L2-L4 after 12 months of treatment with an increase of Z-score. The total BMD increase was 4.5+/-6.5%. BMD in the femoral neck increased after 12 months with an increase of Z-score after 18 months. The total increase was 10.4+/-18%. The total BMD increase was not different among patients with or without basal osteopenia. In both groups BMD in L2-L4 and in the femoral neck remained stable after 12 months without GH treatment. Sex, age, BMI and the time in which GH deficiency started, before or after the end of the peak of BMD, did not correlate with BMD. The BMD values and their response to GH treatment did not correlate with other associated deficiencies, and we did not find differences among BMD increase and GH dose, levels of insulin-growth factor-I, insulin growth factor binding protein-3, and parameters of body composition. CONCLUSIONS: The results of the study support previous ones that BMD is subnormal in adults with GH deficiency; that GH replacement therapy stimulates bone turnover with initial biochemical changes; and that in the long term, this stimulation results in a significant augmentation in BMD that continues to increase after 2 years and remains stable after 12 months of GH withdrawal.  相似文献   

12.
AIM: To study the effects of growth hormone (GH) deficiency (GHD) and GH replacement therapy (GHRx) on bone mineral density (BMD) and body composition. METHODS: 59 GHD children participated (age range 0.4-16.9 years); the follow-up period was 6 years. Lumbar spine BMD (BMD(LS)), total-body BMD (BMD(TB)), and body composition were measured prospectively using dual-energy X-ray absorptiometry. RESULTS: Mean BMD(LS )and BMD(TB) were significantly reduced at the time of the diagnosis. The bone mineral apparent density of the lumbar spine (BMAD(LS)) was reduced to a lesser degree. The BMAD(LS) increased to normal values after 1 year; BMD(LS) and BMD(TB) normalized 1 year later. At the time of the diagnosis, the lean body mass was reduced and steadily increased during GHRx. Percentage of body fat was increased at baseline and normalized within 6 months. The severity of GHD was not associated with the BMD at diagnosis or the response to GHRx. CONCLUSION: Areal BMD(LS) and BMD(TB) and, to a lesser extent, BMAD(LS) are decreased in GHD children, but normalize within 1-2 years.  相似文献   

13.
BACKGROUND: Ghrelin has been reported to be the natural ligand of growth hormone (GH) secretagogue receptor, and it is known that exogenous ghrelin administration strongly stimulates GH release in humans. However, the effects of endogenous ghrelin on GH secretion and changes in ghrelin levels during dynamic changes in GH levels are not well understood. METHODS: Therefore, we measured circulating acylated ghrelin concentrations during oral glucose tolerance tests (OGTTs) in patients with active acromegaly (AA, n = 9) and in age/sex/BMI-matched group A controls (n = 12), and during insulin tolerance testing (ITT) in patients with GH deficiency (GHD, n = 10) and in group B controls (n = 10). Plasma acylated ghrelin, serum GH, insulin and glucose levels were measured during each test. RESULTS: Fasting plasma ghrelin levels correlated negatively with serum insulin levels in both group A and B controls (r = -0.665; p < 0.05) but not in patients with AA or GHD. During OGTTs, circulating ghrelin levels decreased significantly with a nadir at 30 min in both patients with AA (p < 0.05) and group A controls (p < 0.01). Also, ITTs were followed by a significant decrease in circulating ghrelin levels with a nadir at 30 min in patients with GHD (p < 0.05) and in group B controls (p < 0.05). CONCLUSION: The results of the study show that at baseline acylated ghrelin levels do not differ with respect to the GH status (GH excess or GH deficiency) and, furthermore, the suppression of acylated ghrelin levels during OGTT or ITT is independent of the GH response to the tests.  相似文献   

14.
The aim of the present investigation was to study the influence of plasma insulin-like growth factor-1 (IGF-1) and leptin levels on bone mineral mass (BMC) and bone mineral density (BMD) in premenopausal women and the relationship between IGF-1 and leptin levels. Two hundred and four healthy women participated in this study. All participants had a body mass index (BMI) <30 kg/m(2) and were matched for their level of mean daily energy expenditure. BMC and BMD were correlated with measured body composition and blood biochemical parameters. No association was observed between BMC and BMD values with measured physical performance characteristics. Leptin had a significant association with BMC (beta = 0.840; P = 0.0001), total BMD (beta = 0.833; P = 0.0001), femoral neck BMD (beta = 0.829; P = 0.0001), and lumbar spine BMD (beta = 0.833; P = 0.0001). However, these associations were no longer independent when adjusted for body fat mass (FM) and trunk fat:leg fat ratio (P > 0.385). IGF-1 was significantly related to BMC (beta = 0.920; P = 0.0001), total BMD (beta = 0.918; P = 0.0001), femoral neck BMD (beta = 0.921; P = 0.0001), and lumbar spine BMD (beta = 0.917; P = 0.0001), but did not remain significant when adjusted for fat free mass (FFM; P > 0.062). In addition, a significant association between IGF-1 and leptin was found (beta = 0.801; P = 0.0001), and it remained significant after controlling for age, FM, FFM, insulin, and fasting insulin resistance index (FIRI), but not when adjusted for BMC and body mass values. In conclusion, it appears that fasting IGF-1 and leptin concentrations have no direct effect on BMC and BMD values. In addition, if there is an important relationship between IGF-1 and leptin, it is mediated or confounded by BMC in premenopausal women.  相似文献   

15.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

16.
Accuracy of body composition measurements by dual-energy X-ray absorptiometry (DXA) was compared with direct chemical analysis in 10 adult rhesus monkeys. DXA was highly correlated (r-values > 0.95) with direct analyses of body fat mass (FM), lean mass (LM) and lumbar spine bone mineral content (BMC). DXA measurements of total body BMC were not as strongly correlated (r-value = 0.58) with total carcass ash content. DXA measurements of body FM, LM and lumbar spine BMC were not different from data obtained by direct analyses (P-values > 0.30). In contrast, DXA determinations of total BMC (TBMC) averaged 15%, less than total carcass ash measurements (P = 0.002). In conclusion, this study confirms the accurate measurement of fat and lean tissue mass by DXA in rhesus monkeys. DXA also accurately measured lumbar spine BMC but underestimated total body BMC as compared with carcass ash determinations.  相似文献   

17.
We report long-term evolution of endocrine functions and the results of GH treatment in 35 patients (26 male and 9 female) with pituitary stalk interruption. At diagnosis, mean chronological age was 4.8 +/- 2.7 years, mean SDS for height -3.1 +/- 0.8 with a bone age retardation of 2.3 +/- 1.3 years and a mean SDS for growth velocity of -0.5 +/- 1.1; 80% presented complete GH deficiency (GHD) and 20% partial GHD; thyroid deficiency was present in 47.1% of children with complete GHD but absent in all partial GHD. Diagnosis was made during the first months of life in only 2 patients while 23% presented with severe neonatal distress; neonatal signs were only observed in the group with pituitary height below 2 mm (45.7% of patients). GHD was isolated in 40.6% of patients below 10 years while multiple hormone deficiencies was consistent at completion of growth in all patients. Height gain was significantly higher in patients who started GH treatment before 4 years (p = 0.002). GH treatment is very effective: in 13 patients, final height was -0.4 +/- 1.0, total height gain 3.2 +/- 1.2 and distance to target height -0.3 +/- 1.6 SDS.  相似文献   

18.

Purpose

To describe bone status and analyse bone mass in adolescent cyclists.

Methods

Male road cyclists (n = 22) who had been training for a minimum of 2 years and a maximum of 7 years with a volume of 10 h/w, were compared to age-matched controls (n = 22) involved in recreational sports activities. Subjects were divided in 2 groups based on age: adolescents under 17 yrs (cyclists, n = 11; controls, n = 13) and over 17 yrs (cyclists, n = 11; controls, n = 9). Peak oxygen uptake (VO2max) was measured on a cycloergometer. Whole body, lumbar spine, and hip bone mineral content (BMC), density (BMD) and bone area were assessed using dual x-ray absorptiometry (DXA). Volumetric BMD (vBMD) and bone mineral apparent density (BMAD) were also estimated.

Results

The BMC of cyclists was lower for the whole body, pelvis, femoral neck and legs; BMD for the pelvis, hip, legs and whole body and legs bone area was lower but higher in the hip area (all, P≤0.05) after adjusting by lean mass and height. The BMC of young cyclists was 10% lower in the leg and 8% higher in the hip area than young controls (P≤0.05). The BMC of cyclists over 17 yrs was 26.5%, 15.8% and 14.4% lower BMC at the pelvis, femoral neck and legs respectively while the BMD was 8.9% to 24.5% lower for the whole body, pelvis, total hip, trochanter, intertrochanter, femoral neck and legs and 17.1% lower the vBMD at the femoral neck (all P≤0.05). Grouped by age interaction was found in both pelvis and hip BMC and BMD and in femoral neck vBMD (all P≤0.05).

Conclusion

Cycling performed throughout adolescence may negatively affect bone health, then compromising the acquisition of peak bone mass.  相似文献   

19.
The aim of the study was to investigate the relationships between specific anthropometric (9 skinfolds, 13 girths, 8 lengths and 8 breadths), body composition (body fat %, fat free mass [FFM], fat mass [FM]) parameters and bone mineral parameters (bone mineral density [BMD], bone mineral content [BMC) in young rhythmic gymnasts and same age controls. Eighty nine 7-8-year-old girls participated in this study and were divided to the rhythmic gymnast's (n = 46) and control (n = 43) groups. Body composition was determined by dual energy X-ray absorptiometry (FFM, FM, body fat %, BMD and BMC). Body fat % and FM were lower and BMD and BMC values at lumbar spine (L2-L4) and femoral neck were higher in rhythmic gymnasts compared with controls. All measured skinfold thicknesses were thicker in controls. In girths, lengths and widths there were only few significant differences between the groups. Stepwise multiple regression analysis indicated that skinfold thicknesses (supraspinale and medial calf) influenced L2-L4 BMD only in controls 38.2% (R2x100). Supraspinale and iliac crest skinfold thicknesses characterised L2-L4 BMC 43.9% (R2x100). Calf girths influenced BMD in L2-L4 52.3% (R2x100) in controls. BMC in L2-L4 was dependent only on mid-thigh girths 35.9% (R2x100). BMD in L2-L4 was dependent on tibiale-laterale height 30.0% (R2x100). Biiliocristal breadths together with sitting height characterised BMC in L2-L4 BMD 62.3% (R2x100). In conclusion, we found that the relationships between anthropometry, body composition and bone parameters in young rhythmic gymnasts are weak. In control group first of all lower body anthropometric parameters significantly correlated with BMD and BMC in spine.  相似文献   

20.
[Purpose] Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist.[Methods] Female Sprague-Dawley rats (n=23, 6 weeks old) were randomized into three groups: OVX control group (OC, n=7), OVX with DHEA treatment group (OD, n=8), and OVX with DHEA inhibitor group (ODI, n=8) for 8 weeks.[Results] Intestinal calcium accumulation, as well as the rate of absorption, demonstrated no significant differences during the experimental period among investigated groups. The bone mineral density (BMD) of the tibia at the proximal metaphysis was higher in the OD group than that in the OC group (p<0.05); however, BMD of the ODI group showed no significant difference from investigated groups. Furthermore, the BMD of the tibia at the diaphysis did not significantly differ among these groups.[Conclusion] We revealed that DHEA administration does not involve intestinal Ca absorption, although this treatment improves BMD levels in OVX rats. These observations indicate that the effect of DHEA on the bone in postmenopausal women is solely due to its influence on bone metabolism and not intestinal calcium absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号