首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

2.
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons for life on Earth. The photochemical reaction center of PSII is known to possess two stationary states. In the open state (PSIIO), the absorption of a single photon triggers electron-transfer steps, which convert PSII into the charge-separated closed state (PSIIC). Here, by using steady-state and time-resolved spectroscopic techniques on Spinacia oleracea and Thermosynechococcus vulcanus preparations, we show that additional illumination gradually transforms PSIIC into a light-adapted charge-separated state (PSIIL). The PSIIC-to-PSIIL transition, observed at all temperatures between 80 and 308 K, is responsible for a large part of the variable chlorophyll-a fluorescence (Fv) and is associated with subtle, dark-reversible reorganizations in the core complexes, protein conformational changes at noncryogenic temperatures, and marked variations in the rates of photochemical and photophysical reactions. The build-up of PSIIL requires a series of light-induced events generating rapidly recombining primary radical pairs, spaced by sufficient waiting times between these events—pointing to the roles of local electric-field transients and dielectric relaxation processes. We show that the maximum fluorescence level, Fm, is associated with PSIIL rather than with PSIIC, and thus the Fv/Fm parameter cannot be equated with the quantum efficiency of PSII photochemistry. Our findings resolve the controversies and explain the peculiar features of chlorophyll-a fluorescence kinetics, a tool to monitor the functional activity and the structural-functional plasticity of PSII in different wild-types and mutant organisms and under stress conditions.

The closed-state of photosystem II possesses a hitherto unrecognized structural and functional plasticity and upon illumination assumes a light-adapted charge-separated state.  相似文献   

3.
光强在低温弱光胁迫后番茄叶片光合作用恢复中的作用   总被引:7,自引:0,他引:7  
为了研究光强在低温弱光胁迫后番茄叶片光合作用恢复中的作用,以番茄品种浙粉202为材料,研究了低温弱光后恢复期全光照与遮荫对光合作用和叶绿素荧光参数的影响。结果表明:低温弱光(8℃/12℃,PFD 80 μmol·m-2·s-1)导致番茄叶片PnΦPSⅡqPFv′/Fm′的下降,但诱导了NPQ的上升,未引起Fv/Fm的变化;全光照(100%光照)下恢复1 使得植株叶片PnFv/FmΦPSⅡqPNPQFv′/Fm′均大幅下降,随后光合和荧光参数可缓慢恢复至对照水平;遮荫(40%光照)恢复植株Fv/FmΦPSⅡFv′/Fm′仅在第一天稍有下降,而PnqP还略有上升,NPQ虽有所降低但仍显著高于对照水平,随后光合和荧光参数均可迅速恢复到对照水平。说明低温弱光虽抑制了光合作用的进行,但并未引起光抑制的发生;全光照恢复加剧了叶片光抑制的发生,而遮荫恢复可通过叶片PSⅡ光化学活性的快速恢复和天线色素热耗散能力的增强以保护光合机构免受伤害,有利于光合作用的迅速恢复。  相似文献   

4.
Leaves under stressful conditions usually show downregulated maximum quantum efficiency of photosystem II [inferred from variable to maximum chlorophyll (Chl) a fluorescence (Fv/Fm), usually lower than 0.8], indicating photoinhibition. The usual method to evaluate the degree of photoinhibition in winter red leaves is generally by measuring the Fv/Fm on the red adaxial surface. Two phenotypes of overwintering Buxus microphylla ‘Wintergreen’ red leaves, with different measuring site and leaf thickness, were investigated in order to elucidate how red pigments in the outer leaf layer affected the Chl a fluorescence (Fv/Fm) and photochemical reflectance index. Our results showed that the Fv/Fm measured on leaves with the same red surface, but different leaf thickness, exhibited a slightly lower value in half leaf (separated upper and lower layers of leaves by removing the leaf edge similarly as affected by winter freezing and thawing) than that in the intact leaf (without removing the leaf edge), and the Fv/Fm measured on the red surface was significantly lower than that on the inner or backlighted green surface of the same thickness. Our results suggest that the usual measurement of Fv/Fm on red adaxial surface overestimates the actual degree of photoinhibition compared with that of the whole leaf in the winter.  相似文献   

5.
The effect of exogenous applied nitric oxide on photosynthesis under heat stress was investigated in rice seedlings. High temperature resulted in significant reductions of the net photosynthetic rate (P N) due to non-stomatal components. Application of nitric oxide donors, sodium nitroprusside (SNP) or S-nitrosoglutathione (GSNO), dramatically alleviated the decrease of P N induced by high temperature. Chlorophyll fluorescence measurement revealed that high temperature caused significant increase of the initial fluorescence (F o) and non-photochemical quenching (NPQ) whereas remarkable decrease of the maximal fluorescence (F m), the maximal efficiency of PSII photochemistry (F v/F m), the actual PSII efficiency (ΦPSII), and photochemical quenching (q p). In the presence of SNP or GSNO pretreatment, the increase of F o and decrease of F m, F v/F m, ΦPSII and q p were markedly mitigated, but NPQ was further elevated. Moreover, with SNP or GSNO pretreatment, H2O2 accumulation and electrolyte leakage induced by heat treatment were significantly reduced, whereas zeaxanthin content and carotenoid content relative to chlorophyll were elevated. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, arrested NO donors mediated effects. These results suggest that NO can effectively protect photosynthesis from damage induced by heat stress. The activation effect of NO on photosynthesis may be mediated by acting as ROS scavenging, or/and alleviating oxidative stress via maintaining higher carotenoid content relative to chlorophyll or/and enhancing thermal dissipation of excess energy through keeping higher level of zeaxanthin content under heat stress.  相似文献   

6.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

7.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis.  相似文献   

8.
Thalli of Xanthoparmelia somloensis with natural content of polyols (control) and polyol-free thalli (acetone-rinsed) were used to study ribitol effects at low temperatures. Thalli segments were cultivated in ribitol concentration of 32 or 50 mM for 168 h at temperatures +5, 0, and ?5 °C. The chlorophyll fluorescence parameters (potential yield of photochemical reactions in PS 2 (variable to maximum fluorescence ratio, Fv/Fm), effective quantum yield of photochemical reactions in PS 2 (ΦPS2), and non-photochemical quenching (NPQ) were monitored in 24-h intervals using an imaging system. The effect of 32 mM ribitol on Fv/Fm and ΦPS2 was apparent only at ?5 °C, however, the effect was seen throughout the whole exposure. Surprisingly, 50 mM ribitol concentration treatment led to a decrease in Fv/Fm and ΦPS2 and to an increase in NPQ values at ?5 °C, while no change was observed at 0 °C and +5 °C. Acetone-rinsing caused decrease of Fv/Fm, ΦPS2 and NPQ.  相似文献   

9.
A comparison between maximum quantum yield of PSII photochemistry (Fv/Fm) and chlorophyll fluorescence decrease ratio (Rfd) for low and high temperature resistance was assessed in a seasonal study of the acclimation in Pterocephalus lasiospermus. Analyzing the regression adjustment of both parameters and the lethal temperatures (LT50), Rfd resulted in being a more sensitive indicator for low and high temperature treatments, since the thermic resistance estimated with Rfd parameter was never higher than those estimated with Fv/Fm. Furthermore, the use of Fv/Fm led to an overestimation of the acclimation phenomena, with 6ºC of a maximum difference between both parameters. Using Rfd as the indicator parameter, P. lasiospermus acclimated to low temperatures but it kept on being a sensitive species (the lowest LT50 values only achieved–9.9 ± 0.3ºC). bserved (LT50 around 43.5ºC). Thus, according to Rfd evaluation of the thermic threshold, this species could be in risk of damage at low temperatures in this alpine ecosystem.  相似文献   

10.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

11.
Measurements of Sorbus stomata size and density, maximal photochemical efficiency of photosystem II (Fv/Fm), variable-to-initial fluorescence ratio (Fv/F0) and potential electron acceptor capacity (‘area’) were performed during leaf development in four parental diploid species, S. aria, S. aucuparia, S. chamaemespilus, S. torminalis, and two hybrid species, S. hazslinszkyana and S. intermedia. In fully expanded mature leaves, stomata lengths and densities were significantly larger in the shrub S. chamaemespilus than in the five tree species. The best performance of both the Fv/Fm and the Fv/F0 ratio was recorded in S. intermedia, whereas S. chamaemespilus had the highest value of ‘area’. From a physiological point of view, the results of this study showed that the photosystem II reaction centers remained intact functionally through all phenological stages of leaf expansion for all examined species of Sorbus.  相似文献   

12.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

13.
Offord CA 《Annals of botany》2011,108(2):347-357

Background and Aims

Under predicted climate change scenarios, increased temperatures are likely to predispose trees to leaf and other tissue damage, resulting in plant death and contraction of already narrow distribution ranges in many relictual species. The effects of predicted upward temperatures may be further exacerbated by changes in rainfall patterns and damage caused by frosts on trees that have been insufficiently cold-hardened. The Araucariaceae is a relictual family and the seven species found in Australia have limited natural distributions characterized by low frost intensity and frequency, and warm summer temperatures. The temperature limits for these species were determined in order to help understand how such species will fare in a changing climate.

Methods

Experiments were conducted using samples from representative trees of the Araucariaceae species occurring in Australia, Agathis (A. atropurpurea, A. microstachya and A. robusta), Arauacaria (A. bidwilli, A. cunninghamii and A. heterophylla) and Wollemia nobilis. Samples were collected from plants grown in a common garden environment. Lower and higher temperature limits were determined by subjecting detached winter-hardened leaves to temperatures from 0 to –17 °C and summer-exposed leaves to 25 to 63 °C, then measuring the efficiency of photosystem II (Fv/Fm) and visually rating leaf damage. The exotherm, a sharp rise in temperature indicating the point of ice nucleation within the cells of the leaf, was measured on detached leaves of winter-hardened and summer temperature-exposed leaves.

Key Results

Lower temperature limits (indicated by FT50, the temperature at which PSII efficiency is 50 %, and LT50 the temperature at which 50 % visual leaf damage occurred) were approx. –5·5 to –7·5 °C for A. atropurpurea, A. microstachya and A. heterophylla, approx. –7 to –9 °C for A. robusta, A. bidwillii and A. cunninghamii, and –10·5 to –11 °C for W. nobilis. High temperature damage began at 47·5 °C for W. nobilis, and occurred in the range 48·5–52 °C for A. bidwillii and A. cunninghamii, and in the range 50·5–53·5 °C for A. robusta, A. microstachya and A. heterophylla. Winter-hardened leaves had ice nucleation temperatures of –5·5 °C or lower, with W. nobilis the lowest at –6·8 °C. All species had significantly higher ice nucleation temperatures in summer, with A. atropurpurea and A. heterophylla forming ice in the leaf at temperatures >3 °C higher in summer than in winter. Wollemia nobilis had lower FT50 and LT50 values than its ice nucleation temperature, indicating that the species has a degree of ice tolerance.

Conclusions

While lower temperature limits in the Australian Araucariaceae are generally unlikely to affect their survival in wild populations during normal winters, unseasonal frosts may have devastating effects on tree survival. Extreme high temperatures are not common in the areas of natural occurrence, but upward temperature shifts, in combination with localized radiant heating, may increase the heat experienced within a canopy by at least 10 °C and impact on tree survival, and may contribute to range contraction. Heat stress may explain why many landscape plantings of W. nobilis have failed in hotter areas of Australia.  相似文献   

14.
以盆栽1年的虎耳草为材料,研究遮荫条件下虎耳草叶片抗氧化酶体系活力、叶绿素含量、光合速率以及叶绿素荧光参数的变化,为虎耳草规模化栽培提供理论基础。结果表明:透光率50%条件下,叶绿素含量较高;虎耳草抗氧化酶活力最高;光饱和点(LSP)最大,最大光合速率(Amax)最高,光合速率日变化平均值最高,无“午休”;光系统Ⅱ的实际量子产量(ΦPSⅡ)、PSⅡ最大量子产量(Fv/Fm)和光化学猝灭系数(qP)最高,非光化学猝灭系数(qN)最低。这表明,虎耳草在怀化地区的最适光照条件是50%左右的透光率。  相似文献   

15.
N. Sui  M. Li  K. Li  J. Song  B. -S. Wang 《Photosynthetica》2010,48(4):623-629
In order to examine the possible role of unsaturated fatty acids in photosynthesis of halophytes under high salinity, the effect of salinity on plant growth, chlorophyll (Chl) content, photochemical efficiency of PSII, membrane lipid content and fatty acids composition of a C3 euhalophyte Suaeda salsa L. was investigated. Salt stress induced a slight increase of the maximal photochemical efficiency of PSII (Fv/Fm), actual PSII efficiency (ΦPSII), Chl a content and Chl a/b ratio. The unsaturated fatty acid content also increased under salt stress. The proportion of MGDG, DGDG, SQDG, and PC decreased, while the proportion of PG increased from 10.9% to 26.9% under salt stress. These results suggest that S. salsa displays high resistance to photoinhibition under salt stress and that increased concentration of unsaturated fatty acids in membrane lipids of S. salsa enhances the tolerance of photosystem II to salt stress.  相似文献   

16.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

17.
 The seasonal variation in maximum photochemical efficiency of photosystem II (Fv/Fm) and the relationship between Fv/Fm and climatic factors such as irradiance, frost-nights and daily mean temperature was studied in young Norway spruce trees for 4 years in northern Sweden. As a result of night frost, the Fv/Fm-ratio gradually decreased during the autumn. There was between-year variation in the pattern of Fv/Fm in fully exposed shoots during autumn and spring, largely as an effect of differing temperature conditions. During spring, there was a strong apparent relationship between daily mean temperature and Fv/Fm within the temperature range –3 to 12°C. The light regime to which the needles were exposed during winter affected Fv/Fm, and moderately shaded shoots from the bottom of the canopy generally had a higher Fv/Fm-ratio than fully exposed shoots from the top of the canopy. Received: 1 October 1997 / Accepted: 16 June 1998  相似文献   

18.

Background and Aims

Cost–benefit models predict that carnivory can increase the rate of photosynthesis (AN) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased AN and increased respiration rates (RD) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae.

Methods

Pitchers of Nepenthes grown at 200 µmol m−2 s−1 photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations.

Key Results

AN and maximum (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower ΦPSII, resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower AN and ΦPSII in pitchers than in laminae, but RD depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and AN in the pitchers was not found. Cost–benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 µmol m−2 s−1 PAR after which it did not increase further. All fed plants began to flower.

Conclusion

Feeding pitchers with insect larvae increases AN of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but AN of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased AN improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats.Key words: carnivorous plants, chlorophyll fluorescence, Nepenthes talangensis, nitrogen, pitcher plant, photosynthetic rate, photosystem II, respiration rate  相似文献   

19.
The majority of the Southern Ocean is a high-nutrient low-chlorophyll (HNLC) ecosystem. Localized increases in chlorophyll concentration measured in the wake of bathymetric features near South Georgia demonstrate variations in the factors governing the HNLC condition. We explore the possibility that the contrast between these areas of high-chlorophyll and surrounding HNLC areas is associated with variations in phytoplankton photophysiology. Total dissolvable iron concentrations, phytoplankton photophysiology and community structure were investigated in late April 2003 on a transect along the North Scotia Ridge (53–54°S) between the Falkland Islands and South Georgia (58–33°W). Total dissolvable iron concentrations suggested a benthic source of iron near South Georgia. Bulk community measurements of dark-adapted photochemical quantum efficiency (F v/F m) exhibited a sharp increase to the east of 46°W coincident with a decrease in the functional absorption cross-section (σPSII). Phytoplankton populations east of 46°W thus displayed no physiological symptoms of iron or nitrate stress. Contrasting low F v/F m west of 46°W could not be explained by variations in the macronutrients nitrate and silicic acid and may be the result of taxon specific variability in photophysiology or iron stress. We hypothesize that increased F v/F m resulted from local relief from iron-stress near South Georgia, east of Aurora Bank, an area previously speculated to be a “pulse point” source of iron. Our measurements provide one of the first direct physiological confirmations that iron stress is alleviated in phytoplankton populations near South Georgia.  相似文献   

20.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号