首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The tumor suppressor gene p53 has roles in multiple cell-cycle checkpoints, including the G1/S transition, to prevent replication of cells with DNA damage. p53 is thought to be associated with regulation of replication timing during S-phase in the human genome. In the present study, we used p53-wild-type and p53-null HCT116 colon carcinoma cells to analyze p53-dependent changes in replication timing of the human genome. The percentage of HCT116 p53(−/−) cells in S-phase was higher than that of HCT116 p53(+/+) cells. We compared replication timing of human genes between the two cell lines using 25,000 human cDNA microarray. We identified genes that replicated earlier in HCT116 p53(−/−) cells than in HCT116 p53(+/+) cells. These genes included cell-cycle- and apoptosis-related genes. We propose that p53 plays a role in regulation of replication timing of the human genome through the control of cell-cycle checkpoints.  相似文献   

2.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.  相似文献   

3.
4.
5.
6.
Recent investigations have provided information on the origin of replication of the mitochondrial genome of yeast and an explanation for the phenomenon of the suppressivity.  相似文献   

7.
In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome.  相似文献   

8.
The maternal mode of mitochondrial DNA (mtDNA) inheritance is central to human genetics. Recently, evidence for bi-parental inheritance of mtDNA was claimed for individuals of three pedigrees that suffered mitochondrial disorders. We sequenced mtDNA using both direct Sanger and Massively Parallel Sequencing in several tissues of eleven maternally related and other affiliated healthy individuals of a family pedigree and observed mixed mitotypes in eight individuals. Cells without nuclear DNA, i.e. thrombocytes and hair shafts, only showed the mitotype of haplogroup (hg) V. Skin biopsies were prepared to generate ρ° cells void of mtDNA, sequencing of which resulted in a hg U4c1 mitotype. The position of the Mega-NUMT sequence was determined by fluorescence in situ hybridization and two different quantitative PCR assays were used to determine the number of contributing mtDNA copies. Thus, evidence for the presence of repetitive, full mitogenome Mega-NUMTs matching haplogroup U4c1 in various tissues of eight maternally related individuals was provided. Multi-copy Mega-NUMTs mimic mixtures of mtDNA that cannot be experimentally avoided and thus may appear in diverse fields of mtDNA research and diagnostics. We demonstrate that hair shaft mtDNA sequencing provides a simple but reliable approach to exclude NUMTs as source of misleading results.  相似文献   

9.
By following up the chance detection in the electron microscope of a DNA replication intermediate within a preparation of bovine papillomavirus (BPV-1) DNA isolated from purified virus particles, information was obtained about the mechanism of BPV-1 genome replication during the final stages of virus multiplication in naturally infected bovine wart tissue. The structure of viral replication intermediates was investigated by electron microscopic analysis of viral DNA linearized by digestion with restriction endonucleases which cleave the circular BPV-1 chromosome at defined sites. Both Cairns and rolling circle-type molecules were identified. Furthermore, replication eyes were widely distributed within the viral genome, indicating that vegetative BPV-1 DNA replication origins are largely uncoupled from previously described plasmid maintenance sequence elements.  相似文献   

10.
Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins’ ability to recruit ORC and compete for MCM when MCM becomes limiting.  相似文献   

11.
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.  相似文献   

12.
13.
Studying phenotypic variations along gradients may provide insights into mechanisms that drive species distributions and thus can be useful indicators of environmental change. In mountains, the study of phenotypic variation along elevation gradients is of increasing relevance due to the impacts of climate change. We analysed European ringing data to measure the direction of phenotypic variation along elevation gradients in six common, resident songbird species occurring along a wide elevational range. We modelled intraspecific change in wing length, body mass and their ratio with elevation and found a significant increase in wing length and a decrease in body mass at high elevations. The results of our exploratory analysis show the potential that continent-wide ringing databases offer to describe patterns of phenotypic variation along environmental gradients.  相似文献   

14.
It is a basic principle of genetics that each chromosome is transmitted from parent to offspring with a probability that is given by Mendel's laws. However, several known biological processes lead to skewed transmission probabilities among surviving offspring and, therefore, to excess genetic sharing among relatives. Examples include in utero selection against deleterious mutations, meiotic drive, and maternal-fetal incompatibility. Although these processes affect our basic understanding of inheritance, little is known about their overall impact in humans or other mammals. In this study, we examined genome screen data from 148 nuclear families, collected without reference to phenotype, to look for departures from Mendelian transmission proportions. Using single-point and multipoint linkage analysis, we detected a modest but significant genomewide shift towards excess genetic sharing among siblings (average sharing of 50.43% for the autosomes; P=.009). Our calculations indicate that many loci with skewed transmission are required to produce a genomewide shift of this magnitude. Since transmission distortion loci are subject to strong selection, this raises interesting questions about the evolutionary forces that keep them polymorphic. Finally, our results also have implications for mapping disease genes and for the genetics of fertility.  相似文献   

15.
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere‐binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere‐like sequence near the origins. Here, we showed using a lacO/LacI‐GFP system that Taz1‐dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication‐timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication‐timing control and telomeric association of Taz1‐dependent late origins, and this requirement was bypassed by a minishelterin Tpz1‐Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin‐mediated telomeric association of the origins at the onset of S phase.  相似文献   

16.
High-throughput mapping of origins of replication in human cells   总被引:1,自引:0,他引:1  
Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.  相似文献   

17.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

18.
The lytic origins of DNA replication for human herpesvirus 8 (HHV8), oriLyt-L and oriLyt-R, are located between open reading frames K4.2 and K5 and ORF69 and vFLIP, respectively. These lytic origins were elucidated using a transient replication assay. Although this assay is a powerful tool for identifying many herpesvirus lytic origins, it is limited in its ability to evaluate the activity of replication origins in the context of the viral genome. To this end, we investigated the ability of a recombinant HHV8 bacterial artificial chromosome (BAC) to replicate in the absence of oriLyt-R, oriLyt-L, or both oriLyt regions. We generated the HHV8 BAC recombinants (BAC36-DeltaOri-R, BAC36-DeltaOri-L, and BAC36-DeltaOri-RL), which removed one or all of the identified lytic origins. An evaluation of these recombinant BACs revealed that oriLyt-L was sufficient to propagate the viral genome, whereas oriLyt-R alone failed to direct the amplification of viral DNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号