首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.  相似文献   

2.
The threat of potential pandemic influenza requires a reevaluation of licensed therapies for the prophylaxis or treatment of avian H5N1 infection that may adapt to man. Among the therapies considered for use in pandemic influenza is the co-administration of ion channel and neuraminidase inhibitors, both to potentially increase efficacy as well as to decrease the emergence of resistant isolates. To better understand the potential for drug interactions, a cross-over, randomized, open-label trial was conducted with amantadine, 100 mg po bid, and oseltamivir, 75 mg po bid, given alone or in combination for 5 days. Each subject (N = 17) served as their own control and was administered each drug alone or in combination, with appropriate wash-out. Co-administration with oseltamivir had no clinically significant effect on the pharmacokinetics (PK) of amantadine [mean ratios (90% CI) for AUC(0-12) 0.93 (0.89, 0.98) and C(max) 0.96 (0.90, 1.02)]. Similarly, amantadine co-administration did not affect oseltamivir PK [AUC(0-12) 0.92 (0.86, 0.99) and C(max) 0.85 (0.73, 0.99)] or the PK of the metabolite, oseltamivir carboxylate [AUC(0-12) 0.98 (0.95, 1.02) and C(max) 0.95 (0.89, 1.01)]. In this small trial there was no evidence of an increase in adverse events. Although many more subjects would need to be studied to rule out a synergistic increase in adverse events, the combination in this small human drug-drug interaction trial appears safe and without pharmacokinetic consequences. TRIAL REGISTRATION: ClinicalTrials.gov NCT00416962.  相似文献   

3.
The antiviral drug ribavirin exhibits strong antiviral activity against a broad range of RNA viruses. This drug is currently used clinically to treat hepatitis C virus infections, respiratory syncytial virus infections, and Lassa fever virus infections. Although ribavirin was discovered in 1972, its mechanism of action has remained unclear until recently. Using poliovirus as an RNA virus model, it was shown that ribavirin is a virus mutagen, and it was proposed that the primary mechanism of action of ribavirin is via lethal mutagenesis of the RNA virus genomes. This represents a novel antiviral mechanism of action and provides a model for the development of new antiviral strategies. In this review we discuss the genetic explanations, evolutionary implications, and drug development opportunities associated with RNA virus mutagenesis.  相似文献   

4.
The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.  相似文献   

5.
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes.  相似文献   

6.
7.
Li C  Yi M  Hu J  Zhou HX  Cross TA 《Biophysical journal》2008,94(4):1295-1302
The interactions of 15N-labeled amantadine, an antiinfluenza A drug, with DMPC bilayers were investigated by solid-state NMR and by a 12.6-ns molecular dynamics (MD) simulation. The drug was found to assume a single preferred orientation and location when incorporated in these bilayers. The experimental and MD computational results demonstrate that the long axis of amantadine is on average parallel to the bilayer normal, and the amine group is oriented toward the headgroups of the lipid bilayers. The localization of amantadine was determined by paramagnetic relaxation and by the MD simulation showing that amantadine is within the interfacial region and that the amine interacts with the lipid headgroup and glycerol backbone, while the hydrocarbon portion of amantadine interacts with the glycerol backbone and much of the fatty acyl chain as it wraps underneath the drug. The lipid headgroup orientation changes on drug binding as characterized by the anisotropy of 31P chemical shielding and 14N quadrupolar interactions and by the MD simulation.  相似文献   

8.
In the context of a recent pandemic threat by the worldwide spread of H5N1 avian influenza, the high resistance of H5N1 virus to the most widely used commercial drug, oseltamivir (Tamiflu), is currently an important research topic. Herein, molecular bases of the mechanism of H5N1 NA resistance to oseltamivir were elucidated using a computational approach in a systematic fashion. Using the crystal structure of the complex of H5N1 NA with OTV (PDB ID: 2hu0) as the starting point, the question, how mutations at His274 by both smaller side chain (Gly, Ser, Asn, Gln) and larger side chain (Phe, Tyr) residues influence the sensitivity of N1 to oseltamivir, was addressed and correlated with the experimental data. The smaller side chain residue mutations of His274 resulted in slightly enhanced or unchanged NA sensitivity to OTV, while His274Phe and His274Tyr reduced the susceptibility of OTV to N1. In contrast to the binding free energies, the net charges of Glu276 and Arg224, making charge-charge interactions with Glu276, were established to be more sensitive to detecting subtle conformational differences induced at the key residue Glu276 by the His274X mutations. This study provides deeper insights into the possibility of developing viable drug-resistant mutants.  相似文献   

9.
Influenza epidemics cause numerous deaths and millions of hospitalizations each year. Because of the alarming emergence of resistance to anti-influenza drugs, there is a need to identify new naturally occurring antiviral molecules. We tested the hypothesis that pomegranate polyphenol extract (PPE) has anti-influenza properties. Using real time PCR, plaque assay, and TCID 50% hemagglutination assay, we have shown that PPE suppresses replication of influenza A virus in MDCK cells. PPE inhibits agglutination of chicken red blood cells (cRBC) by influenza virus and is virucidal. The single-cycle growth conditions indicated that independent of the virucidal effect PPE also inhibits viral RNA replication. PPE did not alter virus ribonucleoprotein (RNP) entry into nucleus or translocation of virus RNP from nucleus to cytoplasm in MDCK cells. We evaluated four major Polyphenols in PPE (ellagic acid, caffeic acid, luteolin, and punicalagin) and demonstrated that punicalagin is the effective, anti-influenza component of PPE. Punicalagin blocked replication of the virus RNA, inhibited agglutination of chicken RBC's by the virus and had virucidal effects. Furthermore, the combination of PPE and oseltamivir synergistically increased the anti-influenza effect of oseltamivir. In conclusion, PPE inhibited the replication of human influenza A/Hong Kong (H3N2) in vitro. Pomegranate extracts should be further studied for therapeutic and prophylactic potential especially for influenza epidemics and pandemics.  相似文献   

10.
Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.  相似文献   

11.
The biotechnological method of synthesis of the antiviral drug ribavirin based on the transglycosylation reaction was improved due to the addition of catalytic amounts of sodium arsenate. This approach allows us to hydrolyze the excess natural nucleoside guanosine, a ribose donor, and, hence, made the composition of the reaction mixture less complicated, thus facilitating the process of ribavirin isolation. It was shown that in cell cultures the combination of ribavirin and oseltamivir carboxylate inhibited the replication of the influenza A virus more effectively than each of them alone. Similar results were obtained in experiments on laboratory animals (mouse Balb/c) infected with the influenza A virus H3N2/Aichi/68 strain.  相似文献   

12.
To address its value as a screening tool in the development of antiviral drugs, a recombinant influenza virus expressing green fluorescent protein (rPR8-GFP virus) was investigated in vitro and in vivo. The inhibition of viral growth by a neuraminidase inhibitor in the cells or lower respiratory tracts of mice could be visualized by the level of fluorescence. In addition, the rPR8-GFP virus exhibited high pathogenicity in mice. Taken together, these results suggest that the rPR8-GFP virus can be a useful tool for the rapid identification of antiviral drugs active against influenza viruses.  相似文献   

13.
Salom D  Hill BR  Lear JD  DeGrado WF 《Biochemistry》2000,39(46):14160-14170
The M2 proton channel from the influenza A virus is a small protein with a single transmembrane helix that associates to form a tetramer in vivo. This protein forms proton-selective ion channels, which are the target of the drug amantadine. Here, we propose a mechanism for the pH-dependent association, and amantadine binding of M2, based on studies of a peptide representing the M2 transmembrane segment in dodecylphosphocholine micelles. Using analytical ultracentrifugation, we find that the sedimentation curves for the peptide depend on its concentration in the micellar phase. The data are well-described by a monomer-tetramer equilibrium, and the binding of amantadine shifts the monomer-tetramer equilibrium toward tetrameric species. Both tetramerization and the binding of amantadine lead to increases in the magnitude of the ellipticity at 223 nm in the circular dichroism spectrum of the peptide. The tetramerization and binding of amantadine are more favorable at elevated pH, with a pK(a) that is assigned to a His side chain, the only ionizable residue within the transmembrane helix. Our results, interpreted quantitatively in terms of a reversible monomer and tetramer protonation equilibrium model, suggest that amantadine competes with protons for binding to the deprotonated tetramer, thereby stabilizing the tetramer in a slightly altered conformation. This model accounts for the observed inhibition of proton flux by amantadine. Additionally, our measurements suggest that the M2 tetramer is substantially protonated at neutral pH and that both singly and doubly protonated states could be involved in M2's proton conduction at more acidic pHs.  相似文献   

14.
Excellent in vitro inhibition of measles virus infectivity by ribavirin was detectable by a tube method allowing prolonged maintenance which makes possible the evaluation of efficiency at daily intervals. Optimal efficiency occurred on day 5 to 7, depending on the drug dose. Although syntheses of cellular RNA and protein were inhibited by low drug dosage, the de novo DNA synthesis was enhanced. Peak 4-fold enhancement resulted with 320 mug/ml after 2 days treatment.  相似文献   

15.
Ribavirin is administered in combination with interferon-alpha for treatment of hepatitis C virus (HCV) infection. Recently, we demonstrated that the antiviral activity of ribavirin can result from the ability of a viral RNA polymerase to utilize ribavirin triphosphate and to incorporate this nucleotide with reduced specificity, thereby mutagenizing the genome and decreasing the yield of infectious virus (Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379). In this study, we performed a quantitative analysis of a novel HCV RNA polymerase derivative that is capable of utilizing stably annealed primer-template substrates and exploited this derivative to evaluate whether lethal mutagenesis of the HCV genome is a possible mechanism for the anti-HCV activity of ribavirin. These studies demonstrate HCV RNA polymerase-catalyzed incorporation of ribavirin opposite cytidine and uridine. In addition, we demonstrate that templates containing ribavirin support CMP and UMP incorporation with equivalent efficiency. Surprisingly, templates containing ribavirin can also cause a significant block to RNA elongation. Together, these data suggest that ribavirin can exert a direct effect on HCV replication, which is mediated by the HCV RNA polymerase. We discuss the implications of this work on the development of nucleoside analogs for treatment of HCV infection.  相似文献   

16.
17.
C Wang  K Takeuchi  L H Pinto    R A Lamb 《Journal of virology》1993,67(9):5585-5594
The influenza A virus M2 integral membrane protein has ion channel activity which can be blocked by the antiviral drug amantadine. The M2 protein transmembrane domain is highly conserved in amino acid sequence for all the human, swine, equine, and avian strains of influenza A virus, and thus, known amino acid differences could lead to altered properties of the M2 ion channel. We have expressed in oocytes of Xenopus laevis the M2 protein of human influenza virus A/Udorn/72 and the avian virus A/chicken/Germany/34 (fowl plague virus, Rostock) and derivatives of the Rostock ion channel altered in the presumed pore region. The pH of activation of the M2 ion channels and amantadine block of the M2 ion channels were investigated. The channels were found to be activated by pH in a similar manner but differed in their apparent Kis for amantadine block.  相似文献   

18.
BACKGROUND: Interferon-alpha (IFNalpha) in combination with ribavirin can be used for the treatment of patients with chronic hepatitis C. This therapeutic approach achieves an overall sustained response rate of approximately 40%, but treatment takes 6-12 months and patients often experience significant adverse reactions. OBJECTIVE: We aim to develop a tool to distinguish potential responders from nonresponders prior to initiation of IFNalpha-ribavirin treatment. METHODS: Using single nucleotide polymorphisms (SNPs) and viral genotype, we applied the support vector machine (SVM) algorithm to build a tool to predict responsiveness to IFNalpha-ribavirin combination therapy. Furthermore, we utilized the SVM algorithm with the recursive feature elimination method to identify a subset of factors that are significantly more influential than the others. RESULTS AND CONCLUSION: The SVM model is a promising method for inferring responsiveness to IFNalpha dealing with the complex nonlinear relationship between factors (such as SNPs and viral genotype) and successful therapy. In this study, we demonstrate that our tool may allow patients and doctors to make more informed decisions by analyzing host SNP and viral genotype information.  相似文献   

19.
20.
Parasites sometimes expand their host range by acquiring a new host species. After a host change event, the selective regime acting on a given parasite gene may change as a result of host-specific adaptive alterations of protein functionality or host-specific immune-mediated selection. We present a codon-based model that attempts to include these effects by allowing the position-specific substitution process to change in conjunction with a host change event. Following maximum-likelihood parameter estimation, we employ an empirical Bayesian procedure to identify candidate sites potentially involved in host-specific adaptation. We discuss the applicability of the model to the more general problem of ascertaining whether the selective regime differs in two groups of related organisms. The utility of the model is illustrated on a data set of nucleoprotein sequences from the influenza A virus obtained from avian and human hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号