首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maeda K  Ohno T  Igarashi S  Yoshimura T  Yamashiro K  Sakai M 《Gene》2012,505(2):374-378
Aldehyde oxidase is a member of the molybd-flavo enzyme family that catalyzes the hydroxylation of heterocycles and the oxidation of aldehydes into corresponding carboxylic acids. Aldehyde oxidase-1 (AOX1) is highly expressed in liver and is involved in the oxidation of a variety of aldehydes and nitrogenous heterocyclic compounds, including anti-cancer and immunosuppressive drugs. However, the physiological substrates of AOX1 have not been identified, and it was unknown how the expression of AOX1 is regulated. Here, we found that the AOX1 gene is regulated by the Nrf2 pathway. Two Nrf2 binding consensus elements (antioxidant responsive element, ARE) are located in the 5' upstream region of the rat AOX1 gene. Molecular analyses using reporter transfection analysis, EMSA, and ChIP analysis show that Nrf2 binds to and strongly activates the rat AOX1 gene.  相似文献   

3.
4.
Under homeostatic conditions, Nrf2 activity is constitutively repressed. This process is dependent on Keap1, to which Nrf2 binds through the Neh2 domain. Since the N-terminal subdomain of Neh2 (Neh2-NT) contains evolutionarily conserved motifs, we examined the roles they play in the degradation of Nrf2. In Neh2-NT, we defined a novel motif that is distinct from the previously characterized DIDLID motif and designated it DLG motif. Deletion of Neh2-NT or mutation of the DLG motif largely abolished the Keap1-mediated degradation of Nrf2. These mutations were found to enfeeble the binding affinity of Nrf2 to Keap1. The Neh2-NT subdomain directed DLG-dependent, Keap1-independent, degradation of a reporter protein in the nucleus. By contrast, mutation of DLG did not affect the half-life of native Nrf2 protein in the nucleus under oxidative stress conditions. These results thus demonstrate that DLG motif plays essential roles in the Keap1-mediated proteasomal degradation of Nrf2 in the cytoplasm.  相似文献   

5.
Inducible nitric-oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. To determine the degradation pathway of iNOS, human epithelial kidney HEK293 cells with stable expression of human iNOS were incubated in the presence of various degradation pathway inhibitors. Treatment with the proteasomal inhibitors lactacystin, MG132, and N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal resulted in the accumulation of iNOS, indicating that these inhibitors blocked its degradation. Moreover, proteasomal inhibition blocked iNOS degradation in a dose- and time-dependent manner as well as when NO synthesis was inhibited by N(omega)-nitro-l-arginine methyl ester. Furthermore, proteasomal inhibition blocked the degradation of an iNOS splice variant that lacked the capacity to dimerize and of an iNOS mutant that lacks l-arginine binding ability, suggesting that iNOS is targeted by proteasomes, notwithstanding its capacity to produce NO, dimerize, or bind the substrate. In contrast to proteasomal inhibitors, the calpain inhibitor calpastatin and the lysosomal inhibitors trans-epoxysuccinyl-l-leucylamido-4-guanidino butane, leupeptin, pepstatin-A, chloroquine, and NH(4)Cl did not lead to significant accumulation of iNOS. Interestingly, when cytokines were used to induce iNOS in RT4 human epithelial cells, the effect of proteasomal inhibition was dichotomous. Lactacystin added prior to cytokine stimulation prevented iNOS induction by blocking the degradation of the NF-kappaB inhibitor IkappaB-alpha, thus preventing activation of NF-kappaB. In contrast, lactacystin added 48 h after iNOS induction led to the accumulation of iNOS. Similarly, in murine macrophage cell line RAW 264.7, lactacystin blocked iNOS degradation when added 48 h after iNOS induction by lipopolysaccharide. These data identify the proteasome as the primary degradation pathway for iNOS.  相似文献   

6.
In rat liver RL-34 cells, endogenous Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is localized in the ER (endoplasmic reticulum) where it exists as a glycosylated protein. Electron microscopy has demonstrated that ectopic Nrf1 in COS-1 cells is located in the ER and the NE (nuclear envelope). Subcellular fractionation, together with a membrane proteinase protection assay, revealed that Nrf1 is an integral membrane protein with both luminal and cytoplasmic domains. The N-terminal 65 residues of Nrf1 direct its integration into the ER and NE membranes and tether it to a Triton X-100-resistant membrane microdomain that is associated with lipid rafts. The activity of Nrf1 was increased by the electrophile tBHQ (t-butyl hydroquinone) probably through an N-terminal domain-dependent process. We found that the NST (Asn/Ser/Thr-rich) domain, along with AD1 (acidic domain 1), contributes positively to the transactivation activity of full-length Nrf1. Furthermore, the NST domain contains seven putative -Asn-Xaa-Ser/Thr- glycosylation sites and, when glycosylation was prevented by replacing all of the seven asparagine residues with either glutamine (Nrf1(1-7xN/Q)) or aspartic acid (Nrf1(1-7xN/D)), the former multiple point mutant possessed less activity than the wild-type factor, whereas the latter mutant exhibited substantially greater activity. Lastly, the ER stressors tunicamycin, thapsigargin and Brefeldin A were found to inhibit basal Nrf1 activity by approximately 25%, and almost completely prevented induction of Nrf1-mediated transactivation by tBHQ. Collectively, these results suggest that the activity of Nrf1 critically depends on its topology within the ER, and that this is modulated by redox stressors, as well as by its glycosylation status.  相似文献   

7.
CD4+ T cell proliferation depends on the balance between NO and extra-cellular superoxide (O2-). By reducing NO bio-availability, O2- promotes splenic T cell proliferation and immune response intensity. Here, we show that spleen cells from na?ve mice produced neither NO nor O2- during T cell activation, but Gr-1+ splenocytes from primed mice regulated Ag-specific T cell expansion via production of both molecules. Purified splenic Gr-1+ cells included mostly granulocytes at various stages of maturation, as well as monocytes. Activation or recruitment of regulatory Gr-1+ cells was dependent on immunization with CFA. Importantly, these regulatory cells were not detected in draining lymph nodes. These data suggest that innate Gr-1+ splenic cells regulate adaptive immunity.  相似文献   

8.
Growth of new dendritic spines contributes to experience-dependent circuit plasticity in the cerebral cortex. Yet the signaling mechanisms leading to?new spine outgrowth remain poorly defined. Increasing evidence supports that the proteasome is an important mediator of activity-dependent neuronal signaling. We therefore tested the role of the proteasome in activity-dependent spinogenesis. Using pharmacological manipulations, glutamate uncaging, and two-photon imaging of GFP-transfected hippocampal pyramidal neurons, we demonstrate that acute inhibition of the proteasome blocks activity-induced spine outgrowth. Remarkably, mutation of serine 120 to alanine of the Rpt6 proteasomal subunit in individual neurons was sufficient to block activity-induced spine outgrowth. Signaling through NMDA receptors and CaMKII, but not PKA, is required to facilitate spine outgrowth. Moreover, abrogating CaMKII binding to the NMDA receptor abolished activity-induced spinogenesis. Our data support a model in which neural activity facilitates spine outgrowth via an NMDA receptor- and CaMKII-dependent increase in local proteasomal degradation.  相似文献   

9.
The chemokine MCP-1 is thought to play a key role - among many other pathophysiological processes - in myocardial infarction. MCP-1 is not only a key attractant for monocytes and macrophages and as such responsible for inflammation but might also be directly involved in the modulation of repair processes in the heart. We show that cultured human cardiac cells express MCP-1 and that its expression is upregulated by inflammatory cytokines and downregulated by hypoxia. We hypothesize that inflammation but not hypoxia is the main trigger for monocyte recruitment in the human heart.  相似文献   

10.
11.
We have previously demonstrated that insulin-like growth factor 1 (IGF1) induces eukaryotic initiation factor 2B (eIF2B) activation in neuronal cells through the phosphatidylinositol 3 kinase/glycogen synthase kinase 3 pathway as well as by activation of the mitogen-activated protein kinase (MAPK)-activating kinase (MEK)/MAPK signaling pathway (Quevedo, C., Alcázar, A., and Salinas, M. (2000) J. Biol. Chem. 275, 19192-19197). This paper addresses the mechanism involved in IGF1-induced eIF2B activation via the MEK/MAPK cascade in cultured neurons treated with IGF1 and demonstrates that extracellular signal-regulated MAP kinase 1 and 2 (ERK1 and -2) immunoprecipitates of IGF1-treated neuronal cells promote this activation. This effect did not directly result from eIF2B phosphorylation by ERK immunoprecipitates. In addition, recombinant ERK1 and -2 neither activate eIF2B nor phosphorylate it. Endogenous protein phosphatase 1 and 2A catalytic subunits (PP1C and PP2AC, respectively) were co-immunoprecipitated with ERK1 and -2, and the association of ERK with PP1C was stimulated by IGF1 treatment, resulting in increased PP1 activity. ERK immunoprecipitates incubated with PP1 inhibitors did not activate eIF2B, indicating that PP1C activates eIF2B. In vitro experiments with phosphorylated eIF2B showed that recombinant PP1C (alpha isoform) dephosphorylates and activates eIF2B. Paralleling eIF2B activation, IGF1 treatment induced PP1 activation in a MEK/MAPK-dependent fashion. Moreover, the treatment of neurons with the PP1 inhibitor tautomycin inhibited PP1 activation and prevented IGF1-induced eIF2B activation. These findings strongly suggest that IGF1-induced eIF2B activation in neurons is effected by PP1, the activation of which is mediated by the MEK/MAPK signaling pathway.  相似文献   

12.
13.
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. TRIM59 has been showed to participate in many pathological processes, such as inflammation, cytotoxicity and tumorigenesis. However, the molecular mechanisms controlling its expression in activated macrophages are not fully understood. Here we report that TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages. TRIM59 is highly expressed in macrophages, and markedly decreased by LPS stimuli in vivo and in vitro. TRIM59 promoter activity is also significantly suppressed by LPS and further analysis demonstrated that Sp1 and Nrf1 directly bound to the proximal promoter of TRIM59 gene. LPS treatment significantly decreased Sp1 expression, nuclear translocation and reduced its binding to the promoter, whereas increased Nrf1 expression, nuclear translocation and enhanced its binding to the promoter. Moreover, LPS-decreased TRIM59 expression was reversed by JNK inhibitor. Finally, TRIM59 level is significantly decreased during atherosclerosis progression. Taken together, our results demonstrated that TRIM59 expression was precisely regulated by Sp1 and Nrf1 in LPS-activated macrophages, which may be dependent on the activation of JNK signaling pathway and TRIM59 may be a potential therapeutic target for inflammatory diseases such as atherosclerosis.  相似文献   

14.
15.
16.
Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery.  相似文献   

17.
18.
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel phosphorylation site within the DLC1 GAP domain on serine 807. Using a phospho-S807-specific antibody, our results identify protein kinase D (PKD) to phosphorylate this site in DLC1 in intact cells. Although phosphorylation on serine 807 did not directly impact on in vitro GAP activity, a DLC1 serine-to-alanine exchange mutant inhibited colony formation more potently than the wild type protein. Our results thus show that PKD-mediated phosphorylation of DLC1 on serine 807 negatively regulates DLC1 cellular function.  相似文献   

19.
20.
Targeted positioning of water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis. Trafficking of AQP2 to the apical membrane is critical to the reabsorption of water in renal collecting ducts. Controlled apical positioning of AQP2 suggests the existence of proteins that interact with AQP2. A biochemical search for AQP2-interacting proteins led to the identification of PDZ-domain containing protein, signal-induced proliferation-associated gene-1 (SPA-1) which is a GTPase-activating protein (GAP) for Rap1. The distribution of SPA-1 coincided with that of AQP2 in renal collecting ducts. The site of colocalization was concomitantly relocated by hydration status. AQP2 trafficking to the apical membrane was inhibited by the SPA-1 mutant lacking Rap1GAP activity and by the constitutively active mutant of Rap1. AQP2 trafficking was impaired in SPA-1-deficient mice. Our results show that SPA-1 directly binds to AQP2 and regulates at least in part AQP2 trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号