首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies to characterize the pharmacokinetics of the enantiomers of MDMA were conducted in rats using the iliac arterial cannulation. Two routes of administration, intravenous and subcutaneous, were evaluated at two dose levels for each route [20 and 40 mg/kg (+/-)-MDMA for subcutaneous, 10 and 20 mg/kg (+/-)-MDMA for intravenous administrations]. The average half-life (+/- SD) for all dosing groups was 2.5 +/- 0.8 h for (-)-(R)-MDMA and 2.2 +/- 0.8 h for (+)-(S)-MDMA. The more rapid clearance of (+)-(S)-MDMA compared with (-)-(R)-MDMA is consistent with the area under the curve (AUC) data of the parent drug and its primary metabolite MDA. The mean (+/- SD) AUC S/R ratios of MDMA and MDA were 0.70 +/- 0.05 and 3.1 +/- 0.8, respectively. Following a 20 mg/kg dose of racemic MDMA iv the mean (+/- SD) of the percent dose excreted as (-)-(R)-MDMA, (+)-(S)-MDMA, (-)-(R)-MDA, and (+)-(S)-MDA were 20 +/- 10, 12 +/- 6, 3 +/- 1, and 6 +/- 2, respectively.  相似文献   

2.
Amphetamines are a class of psychostimulant drugs that are widely abused for their stimulant, euphoric, empathogenic and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, methamphetamine and 3,4 methylenedioxymethamphetamine (MDMA) produce persistent damage to dopamine and serotonin nerve terminals. This review summarizes the numerous interdependent mechanisms including excitotoxicity, mitochondrial damage and oxidative stress that have been demonstrated to contribute to this damage. Emerging non-neuronal mechanisms by which the drugs may contribute to monoaminergic terminal damage, as well as the neuropsychiatric consequences of this terminal damage are also presented. Methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) have similar chemical structures and pharmacologic properties compared to other abused substances including cathinone (khat), as well as a relatively new class of novel synthetic amphetamines known as ‘bath salts’ that have gained popularity among drug abusers.  相似文献   

3.
Despite numerous reports citing the acute hepatotoxicity caused by 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy), the underlying mechanism of organ damage is poorly understood. We hypothesized that key mitochondrial proteins are oxidatively modified and inactivated in MDMA-exposed tissues. The aim of this study was to identify and investigate the mechanism of inactivation of oxidatively modified mitochondrial proteins, prior to the extensive mitochondrial dysfunction and liver damage following MDMA exposure. MDMA-treated rats showed abnormal liver histology with significant elevation in plasma transaminases, nitric oxide synthase, and the level of hydrogen peroxide. Oxidatively modified mitochondrial proteins in control and MDMA-exposed rats were labeled with biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins, purified with streptavidin-agarose, and resolved using 2-DE. Comparative 2-DE analysis of biotin-NM-labeled proteins revealed markedly increased levels of oxidatively modified proteins following MDMA exposure. Mass spectrometric analysis identified oxidatively modified mitochondrial proteins involved in energy supply, fat metabolism, antioxidant defense, and chaperone activities. Among these, the activities of mitochondrial aldehyde dehydrogenase, 3-ketoacyl-CoA thiolases, and ATP synthase were significantly inhibited following MDMA exposure. Our data show for the first time that MDMA causes the oxidative inactivation of key mitochondrial enzymes which most likely contributes to mitochondrial dysfunction and subsequent liver damage in MDMA-exposed animals.  相似文献   

4.
It is well established that 3,4‐methylenedioxymethamphetamine (MDMA, ecstasy) causes acute liver damage in animals and humans. The aim of this study was to identify and characterize oxidative modification and inactivation of cytosolic proteins in MDMA‐exposed rats. Markedly increased levels of oxidized and nitrated cytosolic proteins were detected 12 h after the second administration of two consecutive MDMA doses (10 mg/kg each). Comparative 2‐DE analysis showed markedly increased levels of biotin‐N‐methylimide‐labeled oxidized cytosolic proteins in MDMA‐exposed rats compared to vehicle‐treated rats. Proteins in the 22 gel spots of strong intensities were identified using MS/MS. The oxidatively modified proteins identified include anti‐oxidant defensive enzymes, a calcium‐binding protein, and proteins involved in metabolism of lipids, nitrogen, and carbohydrates (glycolysis). Cytosolic superoxide dismutase was oxidized and its activity significantly inhibited following MDMA exposure. Consistent with the oxidative inactivation of peroxiredoxin, MDMA activated c‐Jun N‐terminal protein kinase and p38 kinase. Since these protein kinases phosphorylate anti‐apoptotic Bcl‐2 protein, their activation may promote apoptosis in MDMA‐exposed tissues. Our results show for the first time that MDMA induces oxidative‐modification of many cytosolic proteins accompanied with increased oxidative stress and apoptosis, contributing to hepatic damage.  相似文献   

5.

Aims

Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus.

Main methods

The status of 5HT nerve endings in the hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4.

Key findings

Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone.

Significance

Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together.  相似文献   

6.
The acute and long-term effects of the local perfusion of 3,4-methylenedioxymethamphetamine (MDMA) and the interaction with the mitochondrial inhibitor malonate (MAL) were examined in the rat striatum. MDMA, MAL or the combination of MAL with MDMA was reverse dialyzed into the striatum for 8 h via a microdialysis probe while extracellular dopamine (DA) and serotonin (5-HT) were measured. One week later, tissue immediately surrounding the probe was assayed for DA and 5-HT tissue content. Local perfusion of MDMA increased DA and 5-HT release but did not produce long-term depletion of DA or 5-HT in tissue. Malonate also increased both DA and 5-HT release but, in contrast to MDMA, produced only long-term depletion of DA. The combined perfusion of MDMA/MAL synergistically increased the release of DA and 5-HT and produced long-term depletion of both DA and 5-HT in tissue. These results support the conclusion that DA, compared with 5-HT, neurons are more susceptible to mitochondrial inhibition. Moreover, MDMA, which does not normally produce DA depletion in the rat, exacerbated MAL-induced DA depletions. The effect of MDMA in combination with MAL to produce 5-HT depletion suggests a role for bio-energetic stress in MDMA-induced toxicity to 5-HT neurons. Overall, these results highlight the importance of energy balance to the function of DA and 5-HT neurons and to the toxic effects of MDMA.  相似文献   

7.
The serotonin releasing action of 3,4-methylenedioxymethamphetamine on slices of dorsal raphe nucleus from rat was investigated. The slices were maintained in a gas-liquid interface perfusion chamber used for electrophysiological recording. Microdialysis probes designed for use on the slice surface were employed to measure the release of endogenous serotonin which was determined using liquid chromatography with electrochemical detection. Three minute duration exposure of the slices to 100 micromolar 3,4-methylenedioxymethamphetamine caused a long lasting release of endogenous serotonin. Fluoxetine, a serotonin transport inhibitor, reduced the amount of serotonin release. Tryptophan added to the perfusion solution increased both the duration and amount of serotonin released. These results further support earlier work on the mechanism of 3,4-methylenedioxymethamphetamine induced inhibition of serotonin neuronal firing.  相似文献   

8.
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') produces acute hyperthermia which increases the severity of the selective serotoninergic neurotoxicity produced by the drug in rats. Heat shock protein 70 (Hsp70) is a major inducible cellular protein expressed in stress conditions and which is thought to exert protective functions. MDMA (12.5 mg/kg, i.p.), given to rats housed at 22 degrees C, produced an immediate hyperthermia and increased Hsp70 in frontal cortex between 3 h and 7 days after administration. MDMA, given to rats housed at low ambient temperature (4 degrees C) produced transient hypothermia followed by mild hyperthermia but no increase in Hsp70 expression, while rats treated at elevated room temperature (30 degrees C) showed enhanced hyperthermia and similar expression of Hsp70 to that seen in rats housed at 22 degrees C. Fluoxetine-induced inhibition of 5-HT release and hydroxyl radical formation did not modify MDMA-induced Hsp70 expression 3 h later. Four- or 8-day heat shock (elevation of basal rectal temperature by 1.5 degrees C for 1 h) or geldanamycin pre-treatment induced Hsp70 expression and protected against MDMA-induced serotoninergic neurotoxicity without affecting drug-induced hyperthermia. Thus, MDMA-induced Hsp70 expression depends on the drug-induced hyperthermic response and not on 5-HT release or hydroxyl radical formation and pre-induction of Hsp70 protects against the long-term serotoninergic damage produced by MDMA.  相似文献   

9.
The influence of an acute dose (2 mg/kg; i.v.; infused over 10 min) of 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) on the brain serotonin synthesis in the dog was assessed using alpha [11C]methyl-L-tryptophan and positron emission tomography. The rate of serotonin synthesis measured 1 h after injection of MDMA was six times greater than the base line (before MDMA) synthesis. Five hours after the MDMA injection, serotonin synthesis was about one half that at the base line, and about one thirteenth of the synthesis at 1 h after MDMA. A large increase seen 1 h after MDMA probably relates to the large release of serotonin by MDMA and reflects an attempt of the serotonergic system to replenish released serotonin. This probably correlates with the mood changes reported by humans after MDMA intake. Decrease observed 5 h after MDMA, in part, probably relates to the inhibitory effects of the released serotonin, which could act on the activity of tryptophan hydroxylase directly or indirectly via other monoaminergic systems (e.g. dopaminergic).  相似文献   

10.
We have measured the dopamine levels in some discrete rat brain regions after acute intraperitoneal administration of saxitoxin (STX). STX is one of the several toxins that causes paralytic shellfish poisoning (PSP). PSP is a serious public health concern through the world. Certain dinoflagellates are able of producing STX, a powerful neurotoxic compound, which blocks the voltage sensitive sodium channels, entailing to the appearance of the main symptoms of poisoning by PSP: muscular paralysis and respiratory depression. The goal in this study was to analyze the effect of STX on dopamine levels in discrete rat brain regions after its acute intraperitoneal administration. Different experimental periods were analyzed for STX doses (5 and 10 μg kg−1 body weight). With low dose, experimental periods were: 30, 60 and 120 min. With high dose, experimental period was just 30 min. At the end of each experimental period, animals were sacrificed by cervical dislocation. Brains were removed and dissected in: hypothalamus, striatum, midbrain, brain stem, right and left hemispheres. This is to our knowledge, the first report in which a sublethal dose of STX administered intraperitoneally results in an acute alteration of dopamine (DA) production and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC).  相似文献   

11.
A procedure is presented for the simultaneous identification and quantification of amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) in human hair. The method involves decontamination of hair with dichloromethane and warm water, heat-alkaline hydrolysis in the presence of deuterated internal standards, liquid-liquid extraction and gas chromatography-mass spectrometry after derivatization with pentafluoropropionic anhydride-pentafluoropropanol. The limit of detection for AP, MA and MDA was 0.05 ng/mg using a 50-mg hair sample; for MDMA it was 0.1 ng/mg. Coefficients of variation ranged from 7 to 18%. This assay has been successfully utilized in the evaluation of the deposition of the drugs in hair obtained from various parts of the anatomy of a stimulant abuser.  相似文献   

12.
Nicotine was administered acutely and subchronically (14 days) to determine whether various synaptic mechanisms are selectively altered in the nigrostriatal and mesolimbic dopaminergic systems in the rat. When added to tissue preparations in vitro, nicotine had no effects on tyrosine hydroxylase, synaptosomal uptake of [3H]dopamine or binding of [3H]spiperone to D2 receptors in either system. However, acute treatment in vivo stimulated tyrosine hydroxylase activity in the nucleus accumbens. This effect was prevented by pretreatment with a nicotinic antagonist, suggesting that it was mediated by nicotinic receptors. Since subchronic exposure to nicotine had no effect on tyrosine hydroxylase, it appears that tolerance develops to this action. In vivo treatment with nicotine did not alter dopamine uptake or receptor binding. The results suggest that, in doses which result in moderate plasma levels, nicotine has selective stimulant actions on nerve terminals of the mesolimbic system.  相似文献   

13.
14.
p-Methoxyamphetamine (PMA) has been implicated in fatalities as a result of 'ecstasy' (MDMA) overdose worldwide. Like MDMA, acute effects are associated with marked changes in serotonergic neurotransmission, but the long-term effects of PMA are poorly understood. The aim of this study was to determine the effect of repeated PMA administration on in vitro measures of neurodegeneration: serotonin (5-HT) uptake, 5-HT transporter (SERT) density and 5-HT content in the hippocampus, and compare with effects on in vivo 5-HT clearance. Male rats received PMA, MDMA (4 or 15 mg/kg s.c., twice daily) or vehicle for 4 days and 2 weeks later indices of SERT function were measured. [(3)H]5-HT uptake into synaptosomes and [(3)H]cyanoimipramine binding to the SERT were significantly reduced by both PMA and MDMA treatments. 5-HT content was reduced in MDMA-, but not PMA-treatment. In contrast, clearance of locally applied 5-HT measured in vivo by chronoamperometry was only reduced in rats treated with 15 mg/kg PMA. The finding that 5-HT clearance in vivo was unaltered by MDMA treatment suggests that in vitro measures of 5-HT axonal degeneration do not necessarily predict potential compensatory mechanisms that maintain SERT function under basal conditions.  相似文献   

15.
The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose metabolism in freely moving rats using rapid sampling microdialysis (every minute) coupled to flow-injection analysis (FIA) with biosensors for glucose and lactate. Blood samples for analysis of glucose and lactate were taken at 30-45 min intervals before and after drug dosing and body temperature was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1.1 degrees C) following systemic MDMA treatment were entirely blocked in p-chlorophenylalanine pre-treated rats, indicating that these effects are mediated by endogenous serotonin.  相似文献   

16.
Effects of chronic glucagon administration on rat lipoprotein composition   总被引:2,自引:0,他引:2  
Male adult rats of the Wistar strain received daily at 9 a.m. and 5 p.m. 10 micrograms of Zn-protamine glucagon (Novo) for 21 days by subcutaneous injections. Plasma levels of cholesterol, triacylglycerol and phospholipids were decreased by 47, 40 and 21%, respectively. Lipoproteins were separated by sequential ultracentrifugation. Concentrations of cholesterol, phospholipids and proteins were decreased in chylomicrons, VLDL, LDL2 (1.040-1.063 g/ml) and HDL, LDL2 being the most affected by glucagon treatment (-70%). Triacylglycerol levels were decreased only in chylomicrons and VLDL. The relative proportions of cholesterol, triacylglycerol, phospholipids and proteins in lipoproteins were virtually unchanged by glucagon, suggesting a reduced number of some lipoprotein particles in plasma. However, lipoproteins of glucagon-treated rats were depleted in cholesteryl esters, while the proportion of triacylglycerol increased in LDL and HDL. Apo E contents were decreased in plasma, LDL1 (1.006-1.040 g/ml), LDL2 and HDL, whereas apo B100 proportions increased in VLDL and LDL1 in glucagon-treated rats. Glucagon appeared to be a potent hypolipidemic agent affecting mainly the apo-E-rich lipoproteins.  相似文献   

17.
The neurotoxicity of MDMA or "Ecstasy" in rats is selectively serotonergic, while in mice it is both dopaminergic and serotonergic. MDMA metabolism may play a key role in this neurotoxicity. The function of serotonin and dopamine transporter and the effect of MDMA and its metabolites on them are essential to understand MDMA neurotoxicity. The aim of the present study was to investigate and compare the effects of MDMA and its metabolite alpha-methyldopamine (MeDA) on several molecular targets, mainly the dopamine and serotonin transporter functionality, to provide evidence for the role of this metabolite in the neurotoxicity of MDMA in rodents. MeDA had no affinity for the serotonin transporter but competed with serotonin for its uptake. It had no persistent effects on the functionalism of the serotonin transporter, in contrast to the effect of MDMA. Moreover, MeDA inhibited the uptake of dopamine into the serotonergic terminal and also MAO(B) activity. MeDA inhibited dopamine uptake with a lower IC(50) value than MDMA. After drug washout, the inhibition by MeDA persisted while that of MDMA was significantly reduced. The effect of MDMA on the dopamine transporter is related with dopamine release from vesicular stores, as this inhibition disappeared in reserpine-treated animals. However, the effect of MeDA seems to be a persistent conformational change of this transporter. Moreover, in contrast with MDMA, MeDA did not show affinity for nicotinic receptors, so no effects of MeDA derived from these interactions can be expected. The metabolite reduced cell viability at lower concentrations than MDMA. Apoptosis plays a key role in MDMA induced cellular toxicity but necrosis is the major process involved in MeDA cytotoxicity. We conclude that MeDA could protect against the serotonergic lesion induced by MDMA but potentiate the dopaminergic lesion as a result of the persistent blockade of the dopamine transporter induced this metabolite.  相似文献   

18.
19.
The consumption of psychostimulant amphetamine-like drugs has increased significantly in recent years. Some MDMA metabolites are probably involved in the neurotoxicity and neurodegeneration caused by prolonged use rather than MDMA itself. We recently developed a method to analyze MDMA and its five main metabolites in rat plasma [7]. We have now fully validated this method to the quantification of these drugs in rat urine. We extracted MDMA and its metabolites with Oasis WCX cartridges, separated them on a Nucleodur C18 analytical column and quantified them by ion-trap mass spectrometry. Linearity was excellent: 12.5–1250 ng/mL urine for HMA, HMMA, MDA and MDMA, 25–2500 ng/mL for HHMA, and 150–7500 ng/mL for HHA (r2 > 0.993 for all analytes). The lower limits of quantification were 12.5 ng/mL urine for MDMA, MDA, HMA and HMMA, 25 ng/mL for HHMA and 150 ng/mL for HHA. Reproducibility was good (intra-assay precision = 1.7–6.1%; inter-assay precision = 0.6–5.7%), as was accuracy (intra-assay deviation = 0.1–4.8%; inter-assay deviation = 0.7–7.9%). Average recoveries were around 85.0%, except for HHMA (66.2%) and HHA (53.0%) (CV < 8.3%). We also checked the stability of stock solutions and the internal standards after freeze-thawing and in the autosampler. Lastly, we measured the MDMA, MDA, HHMA, HHA, HMMA and HMA in urine samples taken over 24 h from rats given subcutaneous MDMA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号