首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type VI collagen is a transformation-sensitive glycoprotein of the extracellular matrix of fibroblasts. We have isolated and sequenced several overlapping cDNA clones (4153 bp) which encode the entire alpha 2 subunit of chicken type VI collagen. The deduced amino acid sequence predicts that the alpha 2(VI) polypeptide consists of 1015 amino acid residues that are arranged in four domains: a hydrophobic signal peptide of 20 residues, an amino-terminal globular domain of 228 residues, a collagenous segment of 335 residues and a carboxy-terminal globular domain of 432 residues. The collagenous domain contains seven Arg-Gly-Asp tripeptide units, some of which are likely to be used as cell-binding sites. The globular domains contain three homologous repeats with an average length of 180 amino acid residues. These repeats show a striking similarity to the collagen-binding motifs found in von Willebrand factor and cartilage matrix protein. We therefore speculate that the globular domains of the alpha 2(VI) polypeptide may interact with collagenous structures.  相似文献   

3.
The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain. Pro(alpha)1(XXVII) mRNA is 9 kb and expressed by chondrocytes but also by a variety of epithelial cell layers in developing tissues including stomach, lung, gonad, skin, cochlear, and tooth. By Western blotting, type XXVII antisera recognized multiple bands of 240-110 kDa in tissue extracts and collagenous bands of 150-140 kDa in the conditioned medium of the differentiating chondrogenic ATDC5 cell line. Phylogenetic analyses revealed that type XXVII, together with the closely related type XXIV collagen gene, form a new, third clade (type C) within the vertebrate fibrillar collagen family. Furthermore, the exon structure of the type XXVII collagen gene is similar to, but distinct from, those of the genes coding for the type A or B clade pro(alpha) chains.  相似文献   

4.
A monoclonal antibody to a core-protein-related epitope of a small dermatan sulfate-rich proteoglycan (DS-PGII) isolated from adult bovine articular cartilage (22) was used to localize this molecule, or molecules containing this epitope, in bovine articular cartilages, in cartilage growth plate, and in other connective tissues. Using an indirect method employing peroxidase-labeled pig anti-mouse immunoglobulin G, DS-PGII was shown to be present mainly in the superficial zone of adult articular condylar cartilage of the metacarpal-phalangeal joint. In fetal articular and epiphyseal cartilages, the molecule was uniformly distributed throughout the matrix. By approximately 10 months of age it was confined mainly to the superficial and middle zones of articular cartilage and the inter-territorial and pericellular matrix of the deep zone. DS-PGII was not detected in the primary growth plate of the fetus except in the proliferative zone, where it was sometimes present in trace amounts. In contrast, it was present throughout the adjacent matrix of developing epiphyseal cartilage. In the trabeculae of the metaphysis, strong staining for DS-PGII was seen in decalcified osteoid and bone immediately adjacent to osteoblasts. Staining was also observed on collagen fibrils in skin, tendon, and ligament and in the adventitia of the aorta and of smaller arterial vessels in the skin. These observations indicate that DS-PGII and/or molecules containing this epitope are widely distributed in collagenous tissues, where the molecule is intimately associated with collagen fibrils; in adult cartilage this association is limited mainly to the narrow parallel arrays of fibrils which are found in the superficial zone at the articular surface. From its intimate association and other studies, this molecule may play an important role in determining the sizes and tensile properties of collagen fibrils; it may also be involved in the calcification of osteoid but not of cartilage.  相似文献   

5.
Chondrocyte proliferation and differentiation requires their attachment to the collagen type II-rich matrix of developing bone. This interaction is mediated by integrins and their cytoplasmic effectors, such as the integrin-linked kinase (ILK). To elucidate the molecular mechanisms whereby integrins control these processes, we have specifically inactivated the ILK gene in growth plate chondrocytes using the Cre-lox methodology. Mice carrying an ILK allele flanked by loxP sites (ILK-fl) were crossed to transgenic mice expressing the Cre recombinase under the control of the collagen type II promoter. Inactivation of both copies of the ILK-fl allele lead to a chondrodysplasia characterized by a disorganized growth plate and to dwarfism. Expression of chondrocyte differentiation markers such as collagen type II, collagen type X, Indian hedgehog and the PTH-PTHrP receptor was normal in ILK-deficient growth plates. In contrast, chondrocyte proliferation, assessed by BrdU or proliferating cell nuclear antigen labeling, was markedly reduced in the mutant growth plates. Cell-based assays showed that integrin-mediated adhesion of primary cultures of chondrocytes from mutant animals to collagen type II was impaired. ILK inactivation in chondrocytes resulted in reduced cyclin D1 expression, and this most likely explains the defect in chondrocyte proliferation observed when ILK is inactivated in growth plate cells.  相似文献   

6.
Type X collagen is a recently discovered product of hypertrophic chondrocytes that is localized to presumptive mineralization zones of hyaline cartilage. Thus, in the epiphyseal growth plate of long bones it is present only in the zone of hypertrophic chondrocytes and absent in the resting and rapidly growing cartilage and in bone. Type X collagen represents, therefore, a transient and developmentally regulated collagen which is synthesized by a subpopulation of chondrocytes. We report here the isolation and characterization of cDNA and genomic clones specific for the chicken protein. The results demonstrate that the polypeptide chains of this collagen contain three distinct domains: a short non-collagenous, amino-terminal region, a collagenous domain of 460 amino acid residues, and a non-collagenous, carboxyl-terminal domain of 170 amino acid residues. The nucleotide sequence of the gene shows that these domains are encoded by a long open reading frame that is not interrupted by introns. Examination of the amino acid sequence derived from this nucleotide sequence reveals the presence of a hydrophobic segment localized 10 amino acid residues upstream from the translational stop codon. The length and sequence characteristics of this segment raise the intriguing possibility that Type X collagen polypeptides may contain a transmembrane segment.  相似文献   

7.
Immunolocation analysis of glycosaminoglycans in the human growth plate.   总被引:4,自引:0,他引:4  
Monoclonal antibodies were used in this study to immunolocate glycosaminoglycans throughout the human growth plate. Chondroitin-4-sulfate, chondroitin-6-sulfate, and keratan sulfate were observed in the extracellular matrix of all zones of the growth plate and persisted into the cartilage trabeculae of newly formed metaphyseal bone. Also present in the extracellular matrix was an oversulfated chondroitin/dermatan sulfate glycosaminoglycan which appeared to be specific to the proliferative and hypertrophic zones of the growth plate. As with the other extracellular matrix molecules, this epitope persisted into the cartilage trabeculae of the metaphyseal bone. Zonal differences between the extracellular and pericellular or lacunae matrix were also observed. The hypertrophic chondrocytes appeared to synthesize chondroitin sulfate chains containing a non-reducing terminal 6-sulfated disaccharide, which were located in areas immediately adjacent to the cells. This epitope was not found to any significant extent in the other zones. The pericellular region around hypertrophic chondrocytes also contained a keratan sulfate epitope which was also observed in the resting zone but not in the proliferative zone. These cell-associated glycosaminoglycans were not found in the cartilage trabeculae of metaphyseal bone, indicating their removal as the terminal hypertrophic chondrocytes and their lacunae are removed by invading blood vessels. These changes in matrix glycosaminoglycan content, both in the different zones and within zones, indicate constant subtle alterations in chondrocyte metabolic products as they proceed through their life cycle of proliferation, maturation, and hypertrophy.  相似文献   

8.
During liver fibrosis hepatic stellate cells become activated, transforming into proliferative myofibroblastic cells expressing type I collagen and alpha-smooth muscle actin. They become the major producers of the fibrotic neomatrix in injured liver. This study examines if activated stellate cells are a committed phenotype, or whether they can become deactivated by extracellular matrix. Stellate cells isolated from normal rat liver proliferated and expressed mRNA for activation markers, alpha-smooth muscle actin, type I procollagen and tissue inhibitor of metalloproteinases-1 following 5-7 day culture on plastic, but culture on Matrigel suppressed proliferation and mRNA expression. Activated stellate cells were recovered from plastic by trypsinisation and replated onto plastic, type I collagen films or Matrigel. Cells replated on plastic and type I collagen films proliferated and remained morphologically myofibroblastic, expressing alpha-smooth muscle actin and type I procollagen. However, activated cells replated on Matrigel showed <30% of the proliferative rate of these cells, and this was associated with reduced cellular expression of proliferating cell nuclear antigen and phosphorylation of mitogen-activated protein kinase in response to serum. Activated HSC replated on Matrigel for 3-7 days progressively reduced their expression of mRNA for type I procollagen and alpha-smooth muscle actin and both became undetectable after 7 days. We conclude that basement membrane-like matrix induces deactivation of stellate cells. Deactivation represents an important potential mechanism mediating recovery from liver fibrosis in vivo where type I collagen is removed from the liver and stellate cells might re-acquire contact with their normal basement membrane-like pericellular matrix.  相似文献   

9.
Collagen XVII/BP180, an epithelial adhesion molecule, belongs to the group of collagenous transmembrane proteins, which are characterized by ectodomain shedding. We recently showed that ADAMs can cleave collagen XVII, but also that furin participates in this process (Franzke, C. W., Tasanen, K., Sch?cke, H., Zhou, Z., Tryggvason, K., Mauch, C., Zigrino, P., Sunnarborg, S., Lee, D. C., Fahrenholz, F., and Bruckner-Tuderman, L. (2002) EMBO J. 21, 5026-5035). To define the cleavage region in the juxtamembranous NC16A linker domain and assess its structure and requirements for shedding, we constructed deletion mutants of the NC16A domain, expressed them in COS-7 cells, and analyzed their structural integrity and shedding behavior. A mutant lacking the furin consensus sequence was shed in a normal manner, demonstrating that furin does not cleave collagen XVII but rather activates ADAMs (a disintegrin and metalloproteinase). Large deletions of the NC16A domain prevented shedding, and analysis of defined smaller deletions pointed to the stretch of amino acid residues 528-547 as important for sheddase recognition and cleavage. Secondary protein structure predictions showed that deletion of this stretch resulted in an NC16A domain with a positive net charge and an amphipathic alpha-helix, which can cause conformational changes in the collagen XVII homotrimer. Assessment of triple-helix folding of the mutants revealed a lower thermal stability of all non-shed variants than of wild-type collagen XVII or the shed mutants. In contrast, deletion of the putative nucleation site for triple-helix folding of collagenous transmembrane proteins did not affect folding of collagen XVII. The data indicate that the conformation of the NC16A domain and steric availability of the cleavage site influence shedding and is important for folding of collagen XVII.  相似文献   

10.
In articular cartilage, type VI collagen is concentrated in the pericellular matrix compartment. During protein synthesis and processing at least the alpha3(VI) chain undergoes significant posttranslational modification and cleavage. In this study, we investigated the processing of type VI collagen in articular cartilage. Immunostaining with a specific polyclonal antiserum against the C5 domain of alpha3(VI) showed strong cellular staining seen in nearly all chondrocytes of articular cartilage. Confocal laser-scanning microscopy and immunoelectron microscopy allowed localization of this staining mainly to the cytoplasm and the immediate pericellular matrix. Double-labeling experiments showed a narrow overlap of the C5 domain and the pericellular mature type VI collagen. Our results suggest that at least in human adult articular cartilage the C5 domain of alpha3(VI) collagen is synthesized and initially incorporated into the newly formed type VI collagen fibrils, but immediately after secretion is cut off and is not present in the mature pericellular type VI matrix of articular cartilage.  相似文献   

11.
Brown RJ  Mallory C  McDougal OM  Oxford JT 《Proteomics》2011,11(24):4660-4676
Cartilage plays an essential role during skeletal development within the growth plate and in articular joint function. Interactions between the collagen fibrils and other extracellular matrix molecules maintain structural integrity of cartilage, orchestrate complex dynamic events during embryonic development, and help to regulate fibrillogenesis. To increase our understanding of these events, affinity chromatography and liquid chromatography/tandem mass spectrometry were used to identify proteins that interact with the collagen fibril surface via the amino terminal domain of collagen α1(XI) a protein domain that is displayed at the surface of heterotypic collagen fibrils of cartilage. Proteins extracted from fetal bovine cartilage using homogenization in high ionic strength buffer were selected based on affinity for the amino terminal noncollagenous domain of collagen α1(XI). MS was used to determine the amino acid sequence of tryptic fragments for protein identification. Extracellular matrix molecules and cellular proteins that were identified as interacting with the amino terminal domain of collagen α1(XI) directly or indirectly, included proteoglycans, collagens, and matricellular molecules, some of which also play a role in fibrillogenesis, while others are known to function in the maintenance of tissue integrity. Characterization of these molecular interactions will provide a more thorough understanding of how the extracellular matrix molecules of cartilage interact and what role collagen XI plays in the process of fibrillogenesis and maintenance of tissue integrity. Such information will aid tissue engineering and cartilage regeneration efforts to treat cartilage tissue damage and degeneration.  相似文献   

12.
To allow a more valid comparison between our previous ultrastructural data and the immunolocalization of type IX and other minor collagen species in cryosectioned cartilage, we examined both normal and testicular hyaluronidase-digested canine tibial cartilage by electron microscopy. Removal of matrix proteoglycans caused the pericellular capsule to collapse against the cell surface, suggesting that its normal anatomical position is mediated by pericellular matrix hydration. Detailed examination of the pericellular capsule and pericellular channel revealed fine, faintly banded fibrils and an amorphous component somewhat similar in structure to basement membrane collagens. Matrix vesicles and the electron-dense material of the interterritorial matrix were only partially digested by hyaluronidase. We propose that the pericellular capsule is composed of a "felt-like" network of minor collagen species which act synergistically to maintain both the composition of the pericellular matrix and the integrity of the chondrocyte/pericellular matrix complex during compressive loading.  相似文献   

13.
During the process of tissue remodeling, vitronectin (Vn) is deposited in the extracellular matrix where it plays a key role in the regulation of pericellular proteolysis and cell motility. In previous studies we have shown that extracellular levels of vitronectin are controlled by receptor-mediated endocytosis and that this process is dependent upon vitronectin binding to sulfated proteoglycans. We have now identified vitronectin's 12 amino acid “basic domain” which is contained within the larger 40 amino acid heparin binding domain, as a syndecan binding site. Recombinant vitronectins representing wild type vitronectin (rVn) and vitronectin with the basic domain deleted (rVnΔ347–358) were prepared in a baculoviral expression system. The rVn as well as a glutathione S-transferase (GST) fusion protein, consisting of vitronectin's 40 amino acid heparin binding domain (GST-VnHBD), exhibited dose dependent binding to HT-1080 cell surfaces, which was attenuated following deletion of the basic domain. In addition, GST-VnHBD supported both HT-1080 and dermal fibroblast cell adhesion, which was also dependent upon the basic domain. Similarly, ARH-77 cells transfected with syndecans -1, -2, or -4, but not Glypican-1, adhered to GST-VnHBD coated wells, while adhesion of these same cells was lost following deletion of the basic domain. HT-1080 cells were unable to degrade rVnΔ347–358. Degradation of rVnΔ347–358 was completely recovered in the presence of GST-VnHBD but not in the presence of GST-VnHBDΔ347–358. These results indicate that turnover of soluble vitronectin requires ligation of vitronectin's basic domain and that this binding event can work in transto regulate vitronectin degradation.  相似文献   

14.
Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defect in the homozygous mutants is deregulated growth of collagen fibrils with a significant proportion of abnormally thick collagen fibrils in the skin and cornea as indicated by transmission electron microscopy. A highly organized and regularly spaced collagen fibril matrix typical of the normal cornea is also missing in these mutant mice. This study establishes a crucial role for lumican in the regulation of collagen assembly into fibrils in various connective tissues. Most importantly, these results provide a definitive link between a necessity for lumican in the development of a highly organized collagenous matrix and corneal transparency.  相似文献   

15.
During the process of tissue remodeling, vitronectin (Vn) is deposited in the extracellular matrix where it plays a key role in the regulation of pericellular proteolysis and cell motility. In previous studies we have shown that extracellular levels of vitronectin are controlled by receptor-mediated endocytosis and that this process is dependent upon vitronectin binding to sulfated proteoglycans. We have now identified vitronectin's 12 amino acid “basic domain” which is contained within the larger 40 amino acid heparin binding domain, as a syndecan binding site. Recombinant vitronectins representing wild type vitronectin (rVn) and vitronectin with the basic domain deleted (rVnΔ347-358) were prepared in a baculoviral expression system. The rVn as well as a glutathione S-transferase (GST) fusion protein, consisting of vitronectin's 40 amino acid heparin binding domain (GST-VnHBD), exhibited dose dependent binding to HT-1080 cell surfaces, which was attenuated following deletion of the basic domain. In addition, GST-VnHBD supported both HT-1080 and dermal fibroblast cell adhesion, which was also dependent upon the basic domain. Similarly, ARH-77 cells transfected with syndecans -1, -2, or -4, but not Glypican-1, adhered to GST-VnHBD coated wells, while adhesion of these same cells was lost following deletion of the basic domain. HT-1080 cells were unable to degrade rVnΔ347-358. Degradation of rVnΔ347-358 was completely recovered in the presence of GST-VnHBD but not in the presence of GST-VnHBDΔ347-358. These results indicate that turnover of soluble vitronectin requires ligation of vitronectin's basic domain and that this binding event can work in trans to regulate vitronectin degradation.  相似文献   

16.
Chondrodysplasias are a genetically heterogeneous group of skeletal disorders. Mutations in genes coding for cartilage oligomeric matrix protein (COMP), collagen IX and matrilin-3 have been described to cause the autosomal dominantly inherited form of multiple epiphyseal dysplasia (MED). Even though there is clear evidence that these cartilage matrix proteins interact with each other, their exact functions in matrix organisation and bone development still need to be elucidated. We generated a mouse model lacking both collagen IX and COMP to study the potential complementary role of these proteins in skeletal development. Mice deficient in both proteins exhibit shortened and widened long bones as well as an altered bone structure. They display severe growth plate abnormalities with large hypocellular areas in the central parts of the tibia. In addition, chondrocytes in the proliferative and hypertrophic zones do not show their typical columnar arrangement. These phenotypical traits were not observed in mice deficient only in COMP, while mice lacking only collagen IX showed similar growth plate disturbances and shorter and wider tibiae. The contribution of COMP to the phenotype of mice deficient in both collagen IX and COMP appears minor, even though clear differences in the deposition of matrilin-3 were detected.  相似文献   

17.
The different collagen types were extracted sequentially, by 4 M guanidinium chloride and pepsin, from human foetal and normal and osteoarthritic adult articular cartilage. They were characterized by electrophoresis and immunoblotting. Most of the collagenous proteins present in articular cartilage from young human foetuses were solubilized: almost 40% of the total collagen was extracted in the native form with 4 M guanidinium chloride. Type VI collagen was detected in this fraction as high-molecular-mass chains (185-220 kDa) and a low-molecular-mass chain (140 kDa). Type II, IX and XI collagens were also present, but were extracted more extensively by pepsin digestion. Comparative analysis of normal and osteoarthritic cartilage from adults reveals some major differences: an increase in the solubility of the collagen and modifications of soluble collagen types in osteoarthritic cartilage. Furthermore, type VI collagen was present at a higher concentration in guanidinium chloride extracts of osteoarthritic cartilage than those of normal tissue. This finding was corroborated by electron microscopic observations of the same samples: abundant (100 nm) periodic fibrils were observed in the disorganized pericellular capsule of cloned cells in osteoarthritic cartilage. In normal tissues the pericellular zone was more compact and contained only a few such banded fibrils. The differences in the collagen types solubilized from normal and osteoarthritic cartilage, although corresponding to a minor proportion of the total collagen, demonstrate that important modifications in chondrocyte metabolism and in the collagenous network do occur in degenerated cartilage.  相似文献   

18.
19.
We have isolated undulin, an extracellular matrix protein associated with the surface of collagen fibrils, from chicken embryos. The protein showed a molecular mass of about 600 kDa and is composed of three 210-kDa subunits linked by reducible as well as non-reducible bonds. In contrast to human undulin which reportedly is devoid of collagenous sequences, the chicken protein contained a short triple-helical segment that was sensitive to digestion by bacterial collagenase. Screening of an expression library with affinity-purified antibodies yielded two cDNA clones specific for chicken undulin. Analysis of the amino acid sequence deduced from the nucleotide sequence of these clones showed that the human and the chicken protein shared 71% sequence identity. At the amino-terminus both polypeptides contained several similar repeats related to the type III modules found in fibronectin. Towards the carboxyl terminus, however, the two sequences diverged substantially from each other. While the human sequence terminated in a proline-rich segment, the chicken sequence continued with a domain related to von Willebrand factor, with a domain similar to the noncollagenous domain NC4 of type IX collagen and with a typical collagenous triple helix. A short segment of this sequence was found to be identical with the published sequence of a bovine peptide derived from type XIV collagen. Our protein must therefore represent chicken type XIV collagen. One way to explain these results is the possibility that undulin exists in at least two alternatively spliced variants, one lacking the collagenous domain, as described initially for human undulin, and one containing the triple-helical domain, as found in type XIV collagen.  相似文献   

20.
Immunofluorescence and immunoelectron microscopy were used in conjunction with a monoclonal antibody to investigate the localization of type X collagen in the proximal tibial growth plate of 7-d-old chicks. This molecule was detected throughout the hypertrophic zone first appearing when chondrocytes exhibited hypertrophy: it was absent from the proliferative zone. Type X collagen was primarily associated with type II collagen fibrils as demonstrated by immunogold staining. Type X collagen was not concentrated in the focal calcification sites nor was it associated with matrix vesicles. These observations suggest that type X collagen may play a role other than that directly related to the nucleation of calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号