首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MARK4, also known as Par-1d/MarkL1, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases, which are implicated in the regulation of dynamic biological functions, including glucose and energy homeostasis. However, the physiological function of MARK4 in mammals remains elusive. Here, we investigated a role for MARK4 in regulating energy homeostasis by generating mice with targeted inactivation of the mark4 gene. We show that MARK4 deficiency in mice caused hyperphagia, hyperactivity, and hypermetabolism, leading to protection from diet-induced obesity and its related metabolic complications through up-regulation of brown fat activity. Consequently, MARK4 deficiency mitigated insulin resistance associated with diet-induced obesity by dramatically enhancing insulin-stimulated AKT phosphorylation in major metabolic tissues. Ablation of MARK4 also significantly improved glucose homeostasis by up-regulating the activity and expression of AMPK kinase in key metabolic tissues. Taken together, these data identify a key role of MARK4 in energy metabolism, implicating the kinase as a novel drug target for the treatment of obesity and type 2 diabetes.  相似文献   

2.
Store-operated calcium entry (SOCE) is the predominant Ca2+ entry mechanism in nonexcitable cells and controls a variety of physiological and pathological processes. Although significant progress has been made in identifying the components required for SOCE, the molecular mechanisms underlying it are elusive. The present study provides evidence for a direct involvement of kinase suppressor of Ras 2 (KSR2) in SOCE. Using lymphocytes and fibroblasts from ksr2−/− mice and shKSR2-depleted cells, we find that KSR2 is critical for the elevation of cytosolic Ca2+ concentration. Specifically, our results show that although it is dispensable for Ca2+-store depletion, KSR2 is required for optimal calcium entry. We observe that KSR2 deficiency affects stromal interaction molecule 1 (STIM1)/ORAI1 puncta formation, which is correlated with cytoskeleton disorganization. Of interest, we find that KSR2-associated calcineurin is crucial for SOCE. Blocking calcineurin activity impairs STIM1/ORAI1 puncta-like formation and cytoskeleton organization. In addition, we observe that calcineurin activity and its role in SOCE are both KSR2 dependent.  相似文献   

3.
The phosphatidylinositol-3-kinase-dependent kinase, Akt2, plays a central role in mediating insulin effects in glucose-metabolizing tissues. Akt2 knockout mice display insulin resistance with a reactive increase in pancreatic islet mass and hyperinsulinemia. The related phosphatidylinositol-3-kinase-dependent kinase, serum- and glucocorticoid-regulated kinase 3 (SGK3), is essential for normal postnatal hair follicle development but plays no apparent role in glucose homeostasis. We report here an unexpected role of SGK3 in islet β-cell function, which is revealed in Akt2/SGK3 double-knockout (DKO) mice. DKO mice have markedly worse glucose homeostasis than Akt2 single-null animals, including greater baseline glucose, and greater rise in blood glucose after glucose challenge. However, surprisingly, our data strongly support the idea that this exacerbation of the glucose-handling defect is due to impaired β-cell function, rather than increased insulin resistance in peripheral tissues. DKO mice had lower plasma insulin and C-peptide levels, lower β-cell mass, reduced glucose-stimulated insulin secretion, and greater sensitivity to exogenous insulin than Akt2 single nulls. We further demonstrated that SGK3 is strongly expressed in normal mouse islets and, interestingly, that β-catenin expression is dramatically lower in the islets of DKO mice than in those of Akt2(-/-)/SGK3(+/+) or Akt2(-/-)/SGK3(+/-) mice. Taken together, these data strongly suggest that SGK3 plays a previously unappreciated role in glucose homeostasis, likely through direct effects within β-cells, to stimulate proliferation and insulin release, at least in part by controlling the expression and activity of β-catenin.  相似文献   

4.
Kinase suppressor of Ras (KSR) is a molecular scaffold that interacts with the components of the Raf/MEK/ERK kinase cascade and positively regulates ERK signaling. Phosphorylation of KSR1, particularly at Ser(392), is a critical regulator of KSR1 subcellular localization and ERK activation. We examined the role of phosphorylation of both Ser(392) and Thr(274) in regulating ERK activation and cell proliferation. We hypothesized that KSR1 phosphorylation is involved in generating signaling specificity through the Raf/MEK/ERK kinase cascade in response to stimulation by different growth factors. In fibroblasts, platelet-derived growth factor stimulation induces sustained ERK activation and promotes S-phase entry. Treatment with epidermal growth factor induces transient ERK activation but fails to drive cells into S phase. Mutation of Ser(392) and Thr(274) (KSR1.TVSA) promotes sustained ERK activation and cell cycle progression with either platelet-derived growth factor or epidermal growth factor treatment. KSR1(-/-) mouse embryo fibroblasts expressing KSR1.TVSA proliferate two times faster and grow to a higher density than cells expressing the same level of wild-type KSR1. In addition, KSR1.TVSA is more stable than wild-type KSR1. These data demonstrate that phosphorylation and stability of the molecular scaffold KSR1 are critical regulators of growth factor-specific responses that promote cell proliferation.  相似文献   

5.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 ± 18 and 180 ± 9 μl/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V? of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

6.
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.  相似文献   

7.
The mammalian target of rapamycin (mTOR) kinase is a critical regulator of the differentiation of helper and regulatory CD4+ T cells, as well as memory CD8+ T cells. In this study, we investigated the role of the ERK signaling pathway in regulating mTOR activation in T cells. We showed that activation of ERK following TCR engagement is required for sustained mTOR complex 1 (mTORC1) activation. Absence of kinase suppressor of Ras 1 (KSR1), a scaffold protein of the ERK signaling pathway, or inhibition of ERK resulted in decreased mTORC1 activity following T cell activation. However, KSR1-deficient mice displayed normal regulatory CD4+ T cell development, as well as normal memory CD8+ T cell responses to LCMV and Listeria monocytogenes infection. These data indicate that despite its role in mTORC1 activation, KSR1 is not required in vivo for mTOR-dependent T cell differentiation.  相似文献   

8.
Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.  相似文献   

9.
Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2 flox/flox Lyz2 Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca–1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin- cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.  相似文献   

10.
The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.  相似文献   

11.
Objective: The WNT signaling pathway effector gene TCF7L2 has been associated with an increased risk of type 2 diabetes. However, it remains unclear how this gene affects diabetic pathogenesis. The goal of this study was to investigate the effects of Tcf7l2 haploinsufficiency on metabolic phenotypes in mice.Experimental Design: Tcf7l2 knockout (Tcf7l-/-) mice were generated. Because of the early mortality of Tcf7l2-/- mice, we characterized the metabolic phenotypes of heterozygous Tcf7l2+/- mice in comparison to the wild-type controls. The mice were fed a normal chow diet or a high fat diet (HFD) for 9 weeks.Results: The Tcf7l2+/- mice showed significant differences from the wild-type mice with regards to body weight, fasting glucose and insulin levels. Tcf7l2+/- mice displayed improved glucose tolerance. In the liver of Tcf7l2+/- mice fed on the HFD, reduced lipogenesis and hepatic triglyceride levels were observed when compared with those of wild-type mice. Furthermore, the Tcf7l2+/- mice fed on the HFD exhibited decreased peripheral fat deposition. Immunohistochemistry in mouse pancreatic islets showed that endogenous expression of Tcf7l2 was upregulated in the wild-type mice, but not in the Tcf7l2+/- mice, after feeding with the HFD. However, the haploinsufficiency of Tcf7l2 in mouse pancreatic islets resulted in little changes in glucose-stimulated insulin secretion.Conclusion: These results suggest that decreased expression of Tcf7l2 confers reduction of diabetic susceptibility in mice via regulation on the metabolism of glucose and lipid.  相似文献   

12.
High endogenous production of, or treatment with muricholic bile acids, strongly reduces the absorption of cholesterol. Mice abundant in muricholic bile acids may therefore display an increased resistance against dietary induced weight gain, steatosis, and glucose intolerance due to an anticipated general reduction in lipid absorption. To test this hypothesis, mice deficient in steroid 12-alpha hydroxylase (Cyp8b1-/-) and therefore abundant in muricholic acids were monitored for 11 weeks while fed a high fat diet. Food intake and body and liver weights were determined, and lipids in liver, serum and feces were measured. Further, responses during oral glucose and intraperitoneal insulin tolerance tests were evaluated.On the high fat diet, Cyp8b1-/- mice displayed less weight gain compared to wildtype littermates (Cyp8b1+/+). In addition, liver enlargement with steatosis and increases in serum LDL-cholesterol were strongly attenuated in Cyp8b1-/- mice on high fat diet. Fecal excretion of cholesterol was increased and there was a strong trend for doubled fecal excretion of free fatty acids, while excretion of triglycerides was unaltered, indicating dampened lipid absorption. On high fat diet, Cyp8b1-/- mice also presented lower serum glucose levels in response to oral glucose gavage or to intraperitoneal insulin injection compared to Cyp8b1+/+.In conclusion, following exposure to a high fat diet, Cyp8b1-/- mice are more resistant against weight gain, steatosis, and to glucose intolerance than Cyp8b1+/+ mice. Reduced lipid absorption may in part explain these findings. Overall, the results suggest that muricholic bile acids may be beneficial against the metabolic syndrome.  相似文献   

13.
MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity.  相似文献   

14.
The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.  相似文献   

15.
16.
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-RasV12-induced replicative senescence, and H-RasV12-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1–caveolin-1 interaction increases growth factor demands to promote H-RasV12-induced proliferation and has adverse effects on H-RasV12-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.  相似文献   

17.
The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5 -/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5 -/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5 -/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5 -/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.  相似文献   

18.
Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.  相似文献   

19.
The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)2D3-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)2D3 during growth and development.  相似文献   

20.
Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, and ERK and provides spatial and temporal regulation of Ras-dependent ERK cascade signaling. In this report, we identify the heterotetrameric protein kinase, casein kinase 2 (CK2), as a new KSR1-binding partner. Moreover, we find that the KSR1/CK2 interaction is required for KSR1 to maximally facilitate ERK cascade signaling and contributes to the regulation of Raf kinase activity. Binding of the CK2 holoenzyme is constitutive and requires the basic surface region of the KSR1 atypical C1 domain. Loss of CK2 binding does not alter the membrane translocation of KSR1 or its interaction with ERK cascade components; however, disruption of the KSR1/CK2 interaction or inhibition of CK2 activity significantly reduces the growth-factor-induced phosphorylation of C-Raf and B-Raf on the activating serine site in the negative-charge regulatory region (N-region). This decrease in Raf N-region phosphorylation further correlates with impaired Raf, MEK, and ERK activation. These findings identify CK2 as a novel component of the KSR1 scaffolding complex that facilitates ERK cascade signaling by functioning as a Raf family N-Region kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号