首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Unconjugated bilirubin (UCB) is a powerful antioxidant and a modulator of cell growth through the interaction with several signal transduction pathways. Although newborns develop a physiological jaundice, in case of severe hyperbilirubinemia UCB may become neurotoxic causing severe long‐term neuronal damages, also known as bilirubin encephalopathy. To investigate the mechanisms of UCB‐induced neuronal toxicity, we used the human neuroblastoma cell line SH‐SY5Y as an in vitro model system. We verified that UCB caused cell death, in part due to oxidative stress, which leads to DNA damage and cell growth reduction. The mechanisms of cytotoxicity and cell adaptation to UCB were studied through a proteomic approach that identified differentially expressed proteins involved in cell proliferation, intracellular trafficking, protein degradation and oxidative stress response. In particular, the results indicated that cells exposed to UCB undertake an adaptive response that involves DJ‐1, a multifunctional neuroprotective protein, crucial for cellular oxidative stress homeostasis. This study sheds light on the mechanisms of bilirubin‐induced neurotoxicity and might help to design a strategy to prevent or ameliorate the neuronal damages leading to bilirubin encephalopathy.  相似文献   

3.
Olfactory ensheathing cells (OECs) are a type of glia from the mammalian olfactory system, with neuroprotective and regenerative properties. β-Amyloid peptides are a major component of the senile plaques characteristic of the Alzheimer brain. The amyloid beta (Aβ) precursor protein is cleaved to amyloid peptides, and Aβ25–35 is regarded to be the functional domain of Aβ, responsible for its neurotoxic properties. It has been reported that Aβ25–35 triggers reactive oxygen species (ROS)-mediated oxidative damage, altering the structure and function of mitochondria, leading to the activation of the mitochondrial intrinsic apoptotic pathway. Our goal is to investigate the effects of OECs on the toxicity of aggregated Aβ25–35, in human neuroblastoma SH-SY5Y cells. For such purpose, SH-SY5Y cells were incubated with Aβ25–35 and OEC-conditioned medium (OECCM). OECCM promoted the cell viability and reduced the apoptosis, and decreased the intracellular ROS and the lipid peroxidation. In the presence of OECCM, mRNA and protein levels of antioxidant enzymes (SOD1 and SOD2) were upregulated. Concomitantly, OECCM decreased mRNA and the protein expression levels of cytochrome c, caspase-9, caspase-3, and Bax in SH-SY5Y cells, and increased mRNA and the protein expression level of Bcl-2. However, OECCM did not alter intracellular Ca2+ concentration in SH-SY5Y cells. Taken together, our data suggest that OECCM ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial intrinsic pathway. These data provide new insights into the functional actions of OECCM on oxidative stress-induced cell damage.  相似文献   

4.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

5.
Amino acid transport in mouse peritoneal macrophages is mediated by several membrane carriers with different substrate specificity and sensitivity to environmental stimuli. We reported previously that transport activities of cystine and arginine in the macrophages were induced markedly by low concentrations of bacterial lipopolysaccharide (LPS). It is known that a variety of macrophage functions are affected by ambient oxygen tension. In this study, we have investigated the effects of oxygen on the induction of amino acid transport activity by LPS and found that the induction of cystine, but not arginine, transport activity was dependent on the ambient oxygen tension. When the macrophages were cultured with 2% O(2) in the presence of 1 ng/ml LPS, induction of cystine transport activity was reduced by approximately 70% compared with cells cultured under normoxic conditions. In macrophages, transport of cystine is mediated by a Na(+)-independent anionic amino acid transporter named system x(c)(-). System x(c)(-) is composed of two protein components, xCT and 4F2hc, and the expression of xCT was closely correlated with system x(c)(-) activity. A putative NF-kappaB binding site was found in the 5'-flanking region of the xCT gene, but the enhanced expression of xCT by LPS and oxygen was not mediated by NF-kappaB binding. An increase in intracellular GSH in macrophages paralleled induction of xCT, but not gamma-glutamylcysteine synthetase. These results suggest the importance of system x(c)(-) in antioxidant defense in macrophages exposed to LPS and oxidative stress.  相似文献   

6.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

7.
Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.  相似文献   

8.
9.
System x(c)(-), one of the main transporters responsible for central nervous system cystine transport, is comprised of two subunits, xCT and 4F2hc. The transport of cystine into cells is rate limiting for glutathione synthesis, the major antioxidant and redox cofactor in the brain. Alterations in glutathione status are prevalent in numerous neurodegenerative diseases, emphasizing the importance of proper cystine homeostasis. However, the distribution of xCT and 4F2hc within the brain and other areas has not been described. Using specific antibodies, both xCT and 4F2hc were localized predominantly to neurons in the mouse and human brain, but some glial cells were labeled as well. Border areas between the brain proper and periphery including the vascular endothelial cells, ependymal cells, choroid plexus, and leptomeninges were also highly positive for the system x(c)(-) components. xCT and 4F2hc are also present at the brush border membranes in the kidney and duodenum. These results indicate that system x(c)(-) is likely to play a role in cellular health throughout many areas of the brain as well as other organs by maintaining intracellular cystine levels, thereby resulting in low levels of oxidative stress.  相似文献   

10.
Staurosporine is one of the best apoptotic inducers in different cell types including neuroblastomas. In this study we have compared the efficiency and final outcome of three different anti-apoptotic strategies in staurosporine-treated SH-SY5Y human neuroblastoma cells. At staurosporine concentrations up to 500 nm, z-VAD.fmk a broad-spectrum, noncompetitive inhibitor of caspases, reduced apoptosis in SH-SY5Y cells. At higher concentrations, z-VAD.fmk continued to inhibit caspases and the apoptotic phenotype but not cell death which seems to result from oxidative damage. Stable over-expression of Bcl-2 in SH-SY5Y protected cells from death at doses of staurosporine up to 1 microm. At higher doses, cytochrome c release from mitochondria occurred, caspases were activated and cells died by apoptosis. Therefore, we conclude that Bcl-2 increased the threshold for apoptotic cell death commitment. Over-expression of Bcl-X(L) was far more effective than Bcl-2. Bcl-X(L) transfected cells showed a remarkable resistance staurosporine-induced cytochrome c release and associated apoptotic changes and survived for up to 15 days in 1 microm staurosporine. In these conditions, SH-SY5Y displayed a remarkable phenotype of neuronal differentiation as assessed by neurite outgrowth and expression of neurofilament, Tau and MAP-2 neuronal specific proteins.  相似文献   

11.
Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the mechanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.  相似文献   

12.
GSH and GSH-associated metabolism provide the major line of defense for the protection of cells from oxidative and other forms of toxic stress. Of the three amino acids that comprise GSH, cysteine is limiting for GSH synthesis. As extracellularly cysteine is readily oxidized to form cystine, cystine transport mechanisms are essential to provide cells with cysteine. Cystine uptake is mediated by system x(c)(-), a Na(+)-independent cystine/glutamate antiporter. Inhibition of system x(c)(-) by millimolar concentrations of glutamate, a pathway termed oxidative glutamate toxicity, results in GSH depletion and nerve cell death. Recently, we described a series of compounds derived from the conjugation of epicatechin (EC) with cysteine and cysteine derivatives that protected nerve cells in culture from oxidative glutamate toxicity by maintaining GSH levels. In this study, we characterize an additional EC conjugate, cysteamine-EC, that is 5- to 10-fold more potent than the earlier conjugates. In addition, we show that these EC conjugates maintain GSH levels by enhancing the uptake of cystine into cells through induction of a disulfide exchange reaction, thereby uncoupling the uptake from system x(c)(-). Thus, these novel EC conjugates have the potential to enhance GSH synthesis under a wide variety of forms of toxic stress.  相似文献   

13.
Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent protein. Thus we have generated an improved redox sensor that is much brighter in cells and oxidizes more readily than roGFP2. Cytoplasmic expression of the sensor demonstrated the temporal pattern of 6-hydroxydopamine (6-OHDA) induced oxidative stress in a neuroblastoma cell line (SH-SY5Y). Two distinct oxidation responses were identified in SH-SY5Y cells but a single response observed in cells lacking monoamine transporters (HEK293). While both cell lines exhibited a rapid transient oxidation in response to 6-OHDA, a second oxidative response coincident with cell death was observed only in SH-SY5Y cells, indicating an intracellular metabolism of 6-OHDA, and or its metabolites are involved. In contrast, exogenously applied hydrogen peroxide induced a cellular oxidative response similar to the first oxidation peak, and cell loss was minimal. Glucose deprivation enhanced the oxidative stress induced by 6-OHDA, confirming the pivotal role played by glucose in maintaining a reduced cytoplasmic environment. While these studies support previous findings that catecholamine auto-oxidation products cause oxidative stress, our findings also support studies indicating 6-OHDA induces lethal oxidative stress responses unrelated to production of hydrogen peroxide. Finally, temporal imaging revealed the sporadic nature of the toxicity induced by 6-OHDA in neuroblastoma cells.  相似文献   

14.
Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.  相似文献   

15.
Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.  相似文献   

16.
The homing of hemopoietic stem cells to the bone marrow is mediated by specific interactions occurring between CXCR4, which is expressed on hemopoietic stem cells, and its ligand, stromal cell-derived factor-1 (SDF-1), a CXC chemokine secreted by bone marrow stromal cells. In the present study we evaluated the possibility that neuroblastoma cells use a mechanism similar to that used by hemopoietic stem cells to home to the bone marrow and adhere to bone marrow stromal cells. Our study suggests that CXCR4 expression may be a general characteristic of neuroblastoma cells. SH-SY5Y neuroblastoma cells express not only CXCR4, but also its ligand, SDF-1. CXCR4 expression on SH-SY5Y neuroblastoma cells is tightly regulated by tumor cell-derived SDF-1, as demonstrated by the ability of neutralizing Abs against human SDF-1alpha to up-regulate CXCR4 expression on the tumor cells. The reduction in CXCR4 expression following short term exposure to recombinant human SDF-1alpha can be recovered as a result of de novo receptor synthesis. Recombinant human SDF-1alpha induces the migration of CXCR4-expressing SH-SY5Y neuroblastoma cells in CXCR4- and heterotrimeric G protein-dependent manners. Furthermore, SH-SY5Y cells interact at multiple levels with bone marrow components, as evidenced by the fact that bone marrow-derived constituents promote SH-SY5Y cell migration, adhesion to bone marrow stromal cells, and proliferation. These results suggest that SH-SY5Y neuroblastoma cells are equipped with adequate machinery to support their homing to the bone marrow. Therefore, the ability of neuroblastoma tumors to preferentially form metastases in the bone marrow may be influenced by a set of complex CXCR4-SDF-1 interactions.  相似文献   

17.
Mice lacking expression of the p66 isoform of the ShcA adaptor protein (p66(ShcA)) are less susceptible to oxidative stress and have an extended life span. Specifically, phosphorylation of p66(ShcA) at serine 36 is critical for the cell death response elicited by oxidative damage. We sought to identify the kinase(s) responsible for this phosphorylation. Utilizing the SH-SY5Y human neuroblastoma cell model, it is demonstrated that p66(ShcA) is phosphorylated on serine/threonine residues in response to UV irradiation. Both c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinases are activated by UV irradiation, and we show that both are capable of phosphorylating serine 36 of p66(ShcA) in vitro. However, treatment of cells with a multiple lineage kinase inhibitor, CEP-1347, that blocks UV-induced JNK activation, but not p38, phosphatidylinositol 3-kinase, or MEK1 inhibitors, prevented p66(ShcA) phosphorylation in SH-SY5Y cells. Consistent with this finding, transfected activated JNK1, but not the kinase-dead JNK1, leads to phosphorylation of serine 36 of p66(ShcA) in Chinese hamster ovary cells. In conclusion, JNKs are the kinases that phosphorylate serine 36 of p66(ShcA) in response to UV irradiation in SH-SY5Y cells, and blocking p66(ShcA) phosphorylation by intervening in the JNK pathway may prevent cellular damage due to light-induced oxidative stress.  相似文献   

18.
Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12-96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01-1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.  相似文献   

19.
Monoamine oxidases (MAO) catalyze the oxidative deamination of many biogenic amines and are integral proteins found in the mitochondrial outer membrane. Changes in MAO-A levels are associated with depression, trait aggression, and addiction. Here we report the synthesis, characterization, and in vitro evaluation of novel fluorescent peptide-peptide nucleic acid (PNA) chimeras for MAOA mRNA imaging in live neuronal cells. The probes were designed to include MAOA-specific PNA dodecamers, separated by an N-terminal spacer to a μ-opioid receptor targeting peptide (DAMGO), with a spacer and a fluorophore on the C-terminus. The probe was successfully delivered into human SH-SY5Y neuroblastoma cells through μ-opioid receptor-mediated endocytosis. The K(d) by flow cytometry was 11.6 ± 0.8 nM. Uptake studies by fluorescence microscopy showed ~5-fold higher signal in human SH-SY5Y neuroblastoma cells than in negative control CHO-K1 cells that lack μ-opioid receptors. Moreover, a peptide-mismatch control sequence showed no significant uptake in SH-SY5Y cells. Such mRNA imaging agents with near-infrared fluorophores might enable real time imaging and quantitation of neuronal mRNAs in live animal models.  相似文献   

20.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号