首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While it has been well demonstrated that quantum dots (QDs) play an important role inbiological labeling both in vitro and in vivo,there is no report describing the cellular nanostructure basis ofreceptor-mediated endocytosis.Here,nanostructure evolution responses to the endocytosis of transferrin(Tf)-conjugated QDs were characterized by atomic force microscopy (AFM).AFM-based nanostructureanalysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptorsand the nanostructure evolution is highly correlated with the cell membrane receptor-mediated transduction.Consistently,confocal microscopic and flow cytometry results have demonstrated the specificity anddynamic property of Tf-QD binding and internalization.We found that the internalization of Tf-QD is linearlyrelated to time.Moreover,while the nanoparticles on the cell membrane increased,the endocytosis was stillvery active,suggesting that QD nanoparticles did not interfere sterically with the binding and function ofreceptors.Therefore,ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometerscale.  相似文献   

2.
Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented. The uptake of bound IONPs and the intracellular trafficking was started by increasing the temperature to 37 °C (chase period). While hardly any cellular fluorescence nor any iron staining was detectable directly after the nanoparticle pulse, dotted cellular fluorescence and iron patterns appeared already within a few minutes after start of the chase incubation and became intensified in the perinuclear region during further incubation for up to 90 min. Longer chase incubations resulted in separation of the fluorescent coat from the core of the internalized IONPs. Disruption of actin filaments in C6 cells strongly impaired the internalization of IONPs, whereas destabilization of microtubules traped IONP-containing vesicles to the plasma membrane. In conclusion, nanoparticle pulse-chase experiments allowed to synchronize the cellular uptake of fluorescent IONPs and to identify for C6 cells an actin-dependent early and a microtubule-dependent later process in the intracellular trafficking of fluorescent IONPs.  相似文献   

3.
The use of square wave voltammetry to monitor the cellular uptake, in HeLa cells, of quantum dots (QD) decorated with sweet arrow peptide (SAP) is reported. A SAP derivative containing an additional N-terminal cysteine residue (C-SAP) was synthesized using the solid-phase method and conjugated to QDs. The obtained results show that QDs-SAP either interact with the extracellular cell membrane matrix or translocate the bilayer. The first situation, membrane adsorption, is probably a transient state before cellular uptake. Both confocal microscopy and SWV results support the detection of this cellular internalization process. The developed electrochemical investigation technique can provide valuable insights into the study of peptide-mediated delivery, as well as the design and development of nanoparticle probes for intracellular imaging, diagnostic, and therapeutic applications. In addition, the described electrochemical interrogation is low cost, is easy to use, and offers future interest for diagnostics including cell analysis.  相似文献   

4.
Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrPC to the infectious scrapie isoform PrPSc. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrPC to the cell membrane and in initiating PrPC endocytosis.  相似文献   

5.
We demonstrate the use of self-assembled luminescent semiconductor quantum dot (QD)-peptide bioconjugates for the selective intracellular labeling of several eukaryotic cell lines. A bifunctional oligoarginine cell penetrating peptide (based on the HIV-1 Tat protein motif) bearing a terminal polyhistidine tract was synthesized and used to facilitate the transmembrane delivery of the QD bioconjugates. The polyhistidine sequence allows the peptide to self-assemble onto the QD surface via metal-affinity interactions while the oligoarginine sequence allows specific QD delivery across the cellular membrane and intracellular labeling as compared to nonconjugated QDs. This peptide-driven delivery is concentration-dependent and thus can be titrated. Upon internalization, QDs display a punctate-like staining pattern in which some, but not all, of the QD signal is colocalized within endosomes. The effects of constant versus limited exposure to QD-peptide conjugates on cellular viability are evaluated by a metabolic specific assay, and clear differences in cytotoxicity are observed. The efficacy of using peptides for selective intracellular delivery is highlighted by performing a multicolor QD labeling, where we found that the presence or absence of peptide on the QD surface controls cellular uptake.  相似文献   

6.
We developed multifunctional fluorescent nanoparticles suitable for the nonviral delivery of negatively charged molecules like RNA. Therefore, we incorporated the recently developed branched hCT-derived carrier peptide hCT(18-32)-k7 on the surface of luminescent quantum dots (QDs). Besides detailed characterization of our QD-peptide conjugates concerning stability, toxicity, and uptake mechanism. we used them for efficient RNA delivery into different cell lines. The results of our studies indicate the involvement of more than one endocytotic uptake pathway in the internalization process. Furthermore, we could show that the QD-peptide bioconjugates exhibit no effect on cell viability and possess high stability inside living cells. The efficacy of our newly designed constructs for oligonucleotide drug delivery is highlighted by the successful intracellular transport of Cy-3 labeled RNA. Moreover, by using the chemotherapeutic chloroquine the efficient release of the assemblies out of endosomes was demonstrated. These results prove that our multifunctional platforms are versatile tools for diagnostic and therapeutic imaging purposes applicable for biologically active siRNA or aptamer sequences.  相似文献   

7.
A Mycobacterium tuberculosis membrane protein called Mycobacterium cell entry protein (Mce1A) was previously shown to mediate the uptake of nonpathogenic Escherichia coli and latex beads by nonphagocytic mammalian cells. Here we characterize further the in vitro invasive activity of Mce1A using colloidal gold nanoparticles and fluorescent latex microspheres. Mce1A-coated colloidal gold particles induced plasma membrane invagination and entered membrane-bound compartments inside HeLa cells. Few of the protein-coated particles were also found in the cytosol compartment. Cytochalasin D and nocodazole inhibited the uptake by HeLa cells, indicating that rearrangement of both microtubules and microfilaments was necessary for the uptake. The functional domain of Mce1A for invasion was narrowed to a highly basic 22-amino acid sequence termed Inv3. A synthetic Inv3 peptide stimulated uptake of colloidal gold particles as well as latex microspheres by HeLa cells. A chimeric protein composed of Inv3 sequence at the N terminus of beta-galactosidase appeared to stain the nuclear membrane, suggesting that it entered the HeLa cell cytoplasm. These observations suggest that the cell uptake activity of Mce1A is confined to a small peptide domain located in the core region of the protein. Inv3 could be used to ferry any protein in fusion with it into mammalian cells and may serve as a potent nonviral delivery system.  相似文献   

8.
ABSTRACT: BACKGROUND: There is a huge effort in developing ligand-mediated targeting of nanoparticles to deceased cells and tissue. The plant toxin ricin has been shown to enter cells by utilizing both dynamin-dependent and -independent endocytic pathways. Thus, it is a representative ligand for addressing the important issue of whether even a relatively small ligand-nanoparticle conjugate can gain access to the same endocytic pathways as the free ligand. RESULTS: Here we present a systematic study concerning the internalization mechanism of ricinB:Quantum dot (QD) nanoparticle conjugates in HeLa cells. Contrary to uptake of ricin itself, we found that internalization of ricinB:QDs was inhibited in HeLa cells expressing dominant-negative dynamin. Both clathrin-, Rho-dependent uptake as well as a specific form of macropinocytosis involve dynamin. However, the ricinB:QD uptake was not affected by siRNA-mediated knockdown of clathrin or inhibition of Rho-dependent uptake caused by treating cells with the Clostridium C3 transferase. RicinB:QD uptake was significantly reduced by cholesterol depletion with methyl-beta-cyclodextrin and by inhibitors of actin polymerization such as cytochalasin D. Finally, we found that uptake of ricinB:QDs was blocked by the amiloride analog EIPA, an inhibitor of macropinocytosis. Upon entry, the ricinB:QDs co-localized with dextran, a marker for fluid-phase uptake. Thus, internalization of ricinB:QDs in HeLa cells critically relies on a dynamin-dependent macropinocytosis-like mechanism. CONCLUSIONS: Our results demonstrate that internalization of a ligand-nanoparticle conjugate can be dependent on other endocytic mechanisms than those used by the free ligand, highlighting the challenges of using ligand-mediated targeting of nanoparticles-based drug delivery vehicles to cells of diseased tissues.  相似文献   

9.
The cellular delivery of various biological compounds has recently been improved by conjugating them to short peptides known as protein transduction domains or cell penetrating peptides. These peptides include Tat, Antennapedia and arginine-rich peptides. The common feature of these peptides is their highly cationic nature. Up to now, the cellular uptake of about 50 different peptides and proteins coupled to Tat or Antennapedia peptides has been reported. The ability to deliver molecules into cells is not limited to peptide moieties, since oligonucleotides, peptide nucleic acids or other low molecular weight entities have been successfully internalized. Moreover, most of these examples have been accompanied by the expected biological response. More surprisingly, the uptake of large structures such as liposomes, phages, nanoparticles or adenoviruses has also been documented. Indeed the mechanism by which these very different entities could enter cells following a putative common pathway appeared more and more intriguing after each new reported example of cellular uptake mediated by these peptides. After a long period of uncertainty regarding the mechanism of entry, data from several groups now argue for an energy-dependent process of entry. The entry of most of these molecules is likely to be inhibited by low temperature incubation or in the presence of various drugs applied to inhibit the energy-dependent pathway of cell entry. Moreover, the binding of the highly cationic Tat peptide to various anionic membrane components probably initiates the first step of the cell internalization process.  相似文献   

10.
利用纳米材料介导的药物靶向治疗和动物细胞转基因等相关研究,日益受到人们的关注.但植物因存在细胞壁的障碍,无论原位还是离体细胞培养条件下,利用纳米技术进行基因转移均存在很大难度.因此设想,如通过纳米颗粒材料物理尺寸的改变和表面化学修饰,能改变纳米颗粒与植物细胞壁界面上的生物物理或生物化学特征,从而有利于纳米颗粒材料穿越植物细胞壁进入植物细胞,将对推动纳米技术在植物转基因领域中的应用产生重要意义.根据以上设想,研究了不同的共孵育时间和温度等条件下,杂交鹅掌楸的胚性悬浮细胞与经不同表面化学修饰的CdSe/ZnS纳米颗粒之间相互作用过程的细胞生物学特征,以及CdSe/ZnS量子点的细胞毒性.结果表明,在共孵育后3h以内,激光共聚焦显微镜和电子扫描显微镜下,均可观察到经表面后修饰带正电荷的CdSe/ZnS纳米颗粒.同时,胞吞进入细胞内部的表面携带正电荷的CdSe/ZnS纳米颗粒的量明显与共培养时间、温度有明显的依赖关系,表明它们可以通过细胞的液相胞吞作用进入杂交鹅掌楸细胞内,且不影响细胞的活性;而表面带负电荷的CdSe/ZnS纳米颗粒则主要聚集在细胞外壁附近.在培养溶液中添加20%(质量比)聚乙二醇,可进一步提高鹅掌楸细胞胞吞CdSe/ZnS纳米颗粒的量和减轻CdSe/ZnS纳米颗粒的细胞毒性.本研究表明,以表面携带正电荷的CdSe/ZnS量子点纳米材料作为基因载体,在植物悬浮细胞的转基因研究和应用中具有广泛的前景.  相似文献   

11.
The size of a cell is central to many functions, including cellular communication and exchange of materials with the environment. This modeling and experimental study focused on understanding how the size of a cell determines its ability to uptake nanometer-scale extracellular materials from the environment. Several mechanisms in the cell plasma membrane mediate cellular uptake of nutrients, biomolecules, and particles. These mechanisms involve recognition and internalization of the extracellular molecules via endocytic components, such as clathrin-coated pits, vacuoles, and micropinocytic vesicles. Because the demand for an external resource could be different for cells of different sizes, the collective actions of these various endocytic routes should also vary based on the cell size. Here, using a reaction-diffusion model, we analyze single-cell data to interrogate the one/one mapping between the size of the MDA-MB 231 breast cancer cells and their ability to uptake nanoparticles. Our analysis indicates that under both reaction- and diffusion-controlled regimes, cellular uptake follows a linear relationship with the cell radius. Furthermore, this linear dependency is insensitive to particle size variation within 20–200 nm range. This result is counterintuitive because the general perception is that cellular uptake is proportional to the cell volume (mass) or surface area and hence follow a cubic or square relationship with the cell radius. A further analysis using our model reveals a potential mechanism underlying this linear relationship.  相似文献   

12.
BACKGROUND: CD14 is considered to be the major endotoxin (lipopolysaccharide [LPS]) binding molecule on human monocytes. It initiates cellular response, but its role in the clearance of LPS is not well understood. Under conditions that ensure totally CD14-dependent LPS binding on human monocytes, the internalization mechanisms of LPS and CD14 were studied. METHODS: The uptake and intracellular distribution of fluorescein isothiocyanate (FITC)-LPS and CD14 was determined by flow cytometry, trypan blue quenching, and confocal fluorescence microscopy. Incubation of surface-biotinylated cells with LPS at 37 degrees C or 4 degrees C and subsequent subfractionation was used to further characterize CD14 internalization. The amount of the intracellular CD14 was estimated by CD14 enzyme-linked immunosorbent assay (ELISA). RESULTS: The internalization rate of 10 ng/ml FITC-LPS with 1% human serum was 1% of bound endotoxin per minute, whereas CD14 expression did not decrease at the same time surface. We proved the presence of an intracellular CD14 pool (2.68 x 10(6) molecules per unstimulated monocyte) and could show that internalized FITC-LPS molecules can be found in different intracellular compartments than CD14. Subfractionation of LPS-treated biotinylated monocytes showed no change in biotinylated CD14 in the membrane fraction independently of the incubation temperature (37 degrees C or at 4 degrees C) used, indicating that these CD14 molecules were not taken up by an active process. CONCLUSIONS: These data indicate the presence of a large intracellular CD14 pool in monocytes with a yet unknown function, and suggest that LPS and CD14 molecules can be internalized independently after association on the cell surface.  相似文献   

13.
We present the mechanism for the cellular uptake of layered double hydroxide (LDH) nanoparticles that are internalized into MNNG/HOS cells principally via clathrin-mediated endocytosis. The intracellular LDHs are highly colocalized with not only typical endocytic proteins, such as clathrin heavy chain, dynamin, and eps15, but also transferrin, a marker of the clathrin-mediated process, suggesting their specific internalization pathway. LDHs loaded with an anticancer drug (MTX-LDH) were also prepared to confirm the efficacy of LDHs as drug delivery systems. The cellular uptake of MTX was higher in MTX-LDH-treated cells than in MTX-treated cells, giving a lower IC50 value for MTX-LDH than for MTX only. The inhibition of the cell cycle was greater for MTX-LDH than for MTX only. This result clearly shows that the internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient delivery of MTX-LDH in cells and thus enhance drug efficacy.  相似文献   

14.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat(2)) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat(2) showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat(2). Cellular internalization of Tat and Tat(2) was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 degrees C) remarkably increased cellular internalization of Tat as well as Tat(2) but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 muM), chloroquine (100 muM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat(2). These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat(2) suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

15.
Lipopolysaccharide (LPS)-binding protein regulates the effects of LPS on immunocompetent cells. By catalyzing the binding of LPS to membrane CD14, LPS-binding protein (LBP) potentiates both the inflammatory response and internalization of LPS. LBP-mediated transport of LPS into high density lipoprotein particles participates in LPS clearance. Elevated serum levels of LBP have been shown to elicit protective effects in vivo. Because the expression of LBP is upregulated in lung epithelial cells upon proinflammatory stimulation, we here investigated whether LBP modulates inflammatory responses by lung specific cells. The moderate elevation of LBP concentrations enhanced both LPS-induced signaling and LPS uptake by rat alveolar macrophages, whereas strongly elevated LBP levels inhibited both. In contrast, the lung epithelial cell line A549 responded to high concentrations of LBP by an enhanced LPS uptake which did not result in cellular activation, suggesting an anti-inflammatory function of these cells by clearing LPS.  相似文献   

16.
Dendritic cells (DCs) play a key role in initiating adaptive immune response by presenting antigen to T cells in lymphoid organs. Here, we investigate the potential of quantum dots (QDs) as fluorescent nanoparticles for in vitro and in vivo imaging of DCs, and as a particle-based antigen-delivery system to enhance DC-mediated immune responses. We used confocal, two-photon, and electron microscopies to visualize QD uptake into DCs and compared CD69 expression, T cell proliferation, and IFN-gamma production by DO11.10 and OT-II T cells in vivo in response to free antigen or antigen-conjugated to QDs. CD11c(+) DCs avidly and preferentially endocytosed QDs, initially into small vesicles near the plasma membrane by an actin-dependent mechanism. Within 10 min DCs contained vesicles of varying size, motion, and brightness distributed throughout the cytoplasm. At later times, endocytosed QDs were compartmentalized inside lysosomes. LPS-induced maturation of DCs reduced the rate of endocytosis and the proportion of cells taking up QDs. Following subcutaneous injection of QDs in an adjuvant depot, DCs that had endocytosed QDs were visualized up to 400 microm deep within draining lymph nodes. When antigen-conjugated QDs were used, T cells formed stable clusters in contact with DCs. Antigen-conjugated QDs induced CD69 expression, T cell proliferation, and IFN-gamma production in vivo with greater efficiency than equivalent amounts of free antigen. These results establish QDs as a versatile platform for immunoimaging of dendritic cells and as an efficient nanoparticle-based antigen delivery system for priming an immune response.  相似文献   

17.
Internalization of fluorescently labeled CPPs, pVEC, transportan and scrambled pVEC, in a range of plant cells was investigated. Cellular uptake of the peptides was found to be tissue dependent. pVEC and transportan were distinctly internalized in triticale mesophyll protoplasts, onion epidermal cells, leaf bases and root tips of seven-day old triticale seedlings but showed negligible florescence in coleoptile and leaf tips as observed under a fluorescence microscope. Further, pVEC and transportan uptake studies were focused on mesophyll protoplasts as a system of investigation. In fluorimetric studies transportan showed 2.3 times higher cellular internalization than pVEC in protoplasts, whereas scrambled pVEC failed to show any significant fluorescence. Effect of various factors on cellular internalization of pVEC and transportan in protoplasts was also investigated. The cellular uptake of both the peptides was concentration dependent and nonsaturable. The cellular uptake of pVEC and transportan was enhanced at low temperature (4 degrees C). The presence of endocytic/macropinocytosis inhibitors did not reduce the cellular uptake of the peptides, suggesting direct cell penetration, receptor-independent internalization of pVEC and transportan into the plant cells.  相似文献   

18.
Phagocytosis requires the internalization of a significant fraction of the plasma membrane and results in the intracellular deposition of large particles. We evaluated the effect of phagocytosis on the cellular distribution of recycling receptors and uptake of ligand to determine whether phagocytosis affects receptor behavior. Phagocytosis of zymosan, latex particles, or IgG-coated red blood cells by rabbit alveolar macrophages did not decrease the number of cell surface receptors for transferrin, alpha 2-macroglobulin X protease complexes, maleylated proteins, or mannosylated proteins. The number of surface receptors for transferrin was also unaltered in J774 cells, a macrophage-like cell line. In both cell types extensive phagocytosis did not affect the rate of receptor-mediated endocytosis or the distribution of receptors between the endosome and the cell surface. However, fluid phase pinocytosis was reduced by phagocytosis. The major reduction appeared to be not in the rate of internalization but rather in the delivery of fluid to the lysosome. These results demonstrate that internalization of a significant amount of the plasma membrane during phagocytosis does not diminish the number of receptors on the cell surface and has no effect on receptor-mediated ligand uptake.  相似文献   

19.
Cellular uptake of vector peptides used for internalization of hydrophilic molecules into cells is known to follow two different pathways: direct translocation of the plasma membrane and internalization by endocytosis followed by release into the cytosol. These pathways differ in their energy dependence. The first does not need metabolic energy while the second requires metabolic energy. Herein we used erythrocytes and plasma membrane vesicles to study membrane perturbations induced by the cell penetrating peptide penetratin. The results show that cell penetrating peptides are able to be internalized by two metabolic energy-independent pathways: direct crossing of the plasma membrane and endocytosis-like mechanisms. The last mechanism involves the induction of membrane negative curvature resulting in invaginations that mimic the endosomal uptake in the absence of ATP. This new mechanism called "physical endocytosis" or "self-induced endocytosis" might explain different data concerning the independence or dependence on metabolic energy during cellular uptake and reveals the autonomous capacity of peptides to induce their internalization.  相似文献   

20.
Nanoparticle transport across cell membrane plays a crucial role in the development of drug delivery systems as well as in the toxicity response induced by nanoparticles. As hydrophilic nanoparticles interact with lipid membranes and are able to induce membrane perturbations, hypothetic mechanisms based on membrane curvature or hole formation have been proposed for activating their transmigration. We report on the transport of hydrophilic silica nanoparticles into large unilamellar neutral DOPC liposomes via an internalization process. The strong adhesive interactions of lipid membrane onto the silica nanoparticle triggered liposome deformation until the formation of a curved neck. Then the rupture of this membrane neck led to the complete engulfment of the nanoparticle. Using cryo-electron tomography we determined 3D architectures of intermediate steps of this process unveiling internalized silica nanoparticles surrounded by a supported lipid bilayer. This engulfing process was achieved for a large range of particle size (from 30 to 200 nm in diameter). These original data provide interesting highlights for nanoparticle transmigration and could be applied to biotechnology development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号