首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chirality》2017,29(2):97-102
Chiral objects in shear flow experience a chirality‐specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender‐body theory. The chirality‐specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality‐specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations.  相似文献   

2.
3.
During mitosis, microtubules (MTs), aided by motors and associated proteins, assemble into a mitotic spindle. Recent evidence supports the notion that a membranous spindle matrix aids spindle formation; however, the mechanisms by which the matrix may contribute to spindle assembly are unknown. To search for a mechanism by which the presence of a mitotic membrane might help spindle morphology, we built a computational model that explores the interactions between these components. We show that an elastic membrane around the mitotic apparatus helps to focus MT minus ends and provides a resistive force that acts antagonistically to plus-end-directed MT motors such as Eg5.  相似文献   

4.
Mitotic spindle assembly by two different pathways in vitro   总被引:24,自引:14,他引:10       下载免费PDF全文
We have used Xenopus egg extracts to study spindle morphogenesis in a cell-free system and have identified two pathways of spindle assembly in vitro using methods of fluorescent analogue cytochemistry. When demembranated sperm nuclei are added to egg extracts arrested in a mitotic state, individual nuclei direct the assembly of polarized microtubule arrays, which we term half-spindles; half-spindles then fuse pairwise to form bipolar spindles. In contrast, when sperm nuclei are added to extracts that are induced to enter interphase and arrested in the following mitosis, a single sperm nucleus can direct the assembly of a complete spindle. We find that microtubule arrays in vitro are strongly biased towards chromatin, but this does not depend on specific kinetochore-microtubule interactions. Indeed, although we have identified morphological and probably functional kinetochores in spindles assembled in vitro, kinetochores appear not to play an obligate role in the establishment of stable, bipolar microtubule arrays in either assembly pathway. Features of the two pathways suggest that spindle assembly involves a hierarchy of selective microtubule stabilization, involving both chromatin-microtubule interactions and antiparallel microtubule-microtubule interactions, and that fundamental molecular interactions are probably the same in both pathways. This in vitro reconstitution system should be useful for identifying the molecules regulating the generation of asymmetric microtubule arrays and for understanding spindle morphogenesis in general.  相似文献   

5.
Mitotic spindle regulation by Nde1 controls cerebral cortical size   总被引:1,自引:0,他引:1  
Feng Y  Walsh CA 《Neuron》2004,44(2):279-293
Ablation of the LIS1-interacting protein Nde1 (formerly mNudE) in mouse produces a small brain (microcephaly), with the most dramatic reduction affecting the cerebral cortex. While cortical lamination is mostly preserved, the mutant cortex has fewer neurons and very thin superficial cortical layers (II to IV). BrdU birthdating revealed retarded and modestly disorganized neuronal migration; however, more dramatic defects on mitotic progression, mitotic orientation, and mitotic chromosome localization in cortical progenitors were observed in Nde1 mutant embryos. The small cerebral cortex seems to reflect both reduced progenitor cell division and altered neuronal cell fates. In vitro analysis demonstrated that Nde1 is essential for centrosome duplication and mitotic spindle assembly. Our data show that mitotic spindle function and orientation are essential for normal development of mammalian cerebral cortex.  相似文献   

6.
The orientation of mitotic spindles is tightly regulated in polarized cells, but it has been unclear whether there is a mechanism regulating spindle orientation in nonpolarized cells. Here we show that integrin-dependent cell adhesion to the substrate orients the mitotic spindle of nonpolarized cultured cells parallel to the substrate plane. The spindle is properly oriented in cells plated on fibronectin or collagen, but misoriented in cells on poly-L-lysine or treated with the RGD peptide or anti-beta1-integrin antibody, indicating requirement of integrin-mediated cell adhesion for this mechanism. Remarkably, this mechanism is independent of gravitation or cell-cell adhesion, but requires actin cytoskeleton and astral microtubules. Furthermore, myosin X and the microtubule plus-end-tracking protein EB1 are shown to play a role in this mechanism through remodeling of actin cytoskeleton and stabilization of astral microtubules, respectively. Our results thus uncover the existence of a mechanism that orients the spindle parallel to the cell-substrate adhesion plane, and identify crucial factors involved in this novel mechanism.  相似文献   

7.
Mitotic spindle assembly and orientation are tightly regulated to allow the appropriate segregation of genetic material and cell fate determinants during symmetric and asymmetric divisions. Microtubules and many proteins including the dynein/dynactin complex and the large nuclear mitotic apparatus NuMA protein, are fundamental players in these mechanisms. A recent study reported that huntingtin regulates spindle orientation by ensuring the proper localization of the p150(Glued) subunit of dynactin, dynein and NuMA. This function of huntingtin is conserved in Drosophila. Among other events, spindle orientation influences the fate of daughter cells. In agreement with this, huntingtin changes the direction of division of mouse cortical progenitors and promotes neurogenesis in the neocortex. We will also discuss the involvement of mitotic spindle components in neuronal disorders.  相似文献   

8.
Mitotic spindle formation and chromosome segregation depend critically on kinetochore–microtubule (KT–MT) interactions. A new protein, termed Spindly in Drosophila and SPDL-1 in C. elegans, was recently shown to regulate KT localization of dynein, but depletion phenotypes revealed striking differences, suggesting evolutionarily diverse roles of mitotic dynein. By characterizing the function of Spindly in human cells, we identify specific functions for KT dynein. We show that localization of human Spindly (hSpindly) to KTs is controlled by the Rod/Zw10/Zwilch (RZZ) complex and Aurora B. hSpindly depletion results in reduced inter-KT tension, unstable KT fibers, an extensive prometaphase delay, and severe chromosome misalignment. Moreover, depletion of hSpindly induces a striking spindle rotation, which can be rescued by co-depletion of dynein. However, in contrast to Drosophila, hSpindly depletion does not abolish the removal of MAD2 and ZW10 from KTs. Collectively, our data reveal hSpindly-mediated dynein functions and highlight a critical role of KT dynein in spindle orientation.  相似文献   

9.
Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position‐fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against­ the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti‐centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti‐centering pulling forces localize the mitotic spindles within dividing C. elegans cells.  相似文献   

10.
In animal cells, the mitotic spindle is aligned perpendicular to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring (CAR). We show that, in fission yeast, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. Interaction initially occurs with a region surrounding the nucleus, which we term the astral microtubule interaction zone (AMIZ). Simultaneous contact of astral microtubules from both poles with the AMIZ directs spindle rotation and this requires both actin and two type V myosins, Myo51 and Myo52. Astral microtubules from one pole only then contact the CAR, which is located at the centre of the AMIZ. We demonstrate that the anillin homologue Mid1, which dictates correct placement of the CAR, is necessary to stabilise the mitotic spindle perpendicular to the axis of cell division. Finally, we show that the position of the mitotic spindle is monitored by a checkpoint that regulates the timing of sister chromatid separation.  相似文献   

11.
Mitotic PtK1 spindles were UV irradiated (285 nm) during metaphase and anaphase between the chromosomes and the pole. The irradiation, a rectangle measuring 1.4 x 5 microns parallel to the metaphase plate, severed between 90 and 100% of spindle microtubules (MTs) in the irradiated region. Changes in organization of MTs in the irradiated region were analyzed by EM serial section analysis coupled with 3-D computer reconstruction. Metaphase cells irradiated 2 to 4 microns below the spindle pole (imaged by polarization optics) lost birefringence in the irradiated region. Peripheral spindle fibers, previously curved to focus on the pole, immediately splayed outwards when severed. We demonstrate via serial section analysis that following irradiation the lesion was devoid of MTs. Within 30 s to 1 min, recovery in live cells commenced as the severed spindle pole moved toward the metaphase plate closing the lesion. This movement was concomitant with the recovery of spindle birefringence and some of the severed fibers becoming refocused at the pole. Ultrastructurally we confirmed that this movement coincided with bridging of the lesion by MTs presumably growing from the pole. The non-irradiated half spindle also lost some birefringence and shortened until it resembled the recovered half spindle. Anaphase cells similarly irradiated did not show recovery of birefringence, and the pole remained disconnected from the remaining mitotic apparatus. Reconstructions of spindle structure confirmed that there were no MTs in the lesion which bridged the severed spindle pole with the remaining mitotic apparatus. These results suggest the existence of chromosome-to-pole spindle forces are dependent upon the existence of a MT continuum, and to a lesser extent to the loss of MT initiation capacity of the centrosome at the metaphase/anaphase transition.  相似文献   

12.
The spindle checkpoint prevents activation of the anaphase-promoting complex (APC/C) until all chromosomes are correctly attached to the mitotic spindle. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C by binding the APC/C activating protein CDC20 until the chromosomes are properly aligned and attached to the mitotic spindle, at which point MCC disassembly releases CDC20 to activate the APC/C. Once the APC/C is activated, it targets cyclin B and securin for degradation, and the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. We sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined the effect on the MCC and APC/C activation. Using this approach we found that 2 phosphatase inhibitors, calyculin A and okadaic acid (1 μM), caused MCC dissociation and APC/C activation leading to cyclin A and B degradation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.  相似文献   

13.
During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity—a mechanical paradigm that may be important throughout the spindle.  相似文献   

14.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

15.
Duo1p and Dam1p were previously identified as spindle proteins in the budding yeast, Saccharomyces cerevisiae. Here, analyses of a diverse collection of duo1 and dam1 alleles were used to develop a deeper understanding of the functions and interactions of Duo1p and Dam1p. Based on the similarity of mutant phenotypes, genetic interactions between duo1 and dam1 alleles, interdependent localization to the mitotic spindle, and Duo1p/Dam1p coimmunoprecipitation from yeast protein extracts, these analyses indicated that Duo1p and Dam1p perform a shared function in vivo as components of a protein complex. Duo1p and Dam1p are not required to assemble bipolar spindles, but they are required to maintain metaphase and anaphase spindle integrity. Immunofluorescence and electron microscopy of duo1 and dam1 mutant spindles revealed a diverse variety of spindle defects. Our results also indicate a second, previously unidentified, role for the Duo1p/Dam1p complex. duo1 and dam1 mutants show high rates of chromosome missegregation, premature anaphase events while arrested in metaphase, and genetic interactions with a subset of kinetochore components consistent with a role in kinetochore function. In addition, Duo1p and Dam1p localize to kinetochores in chromosome spreads, suggesting that this complex may serve as a link between the kinetochore and the mitotic spindle.  相似文献   

16.
The assembly and function of mitotic spindles require poly(ADP-ribosyl)ation of spindle components by tankyrase, a poly(ADP-ribose) polymerase that aggregates to spindle poles during mitosis. Tankyrase itself is phosphorylated during mitosis, but the kinases involved remain undefined. Herein we report that mitotic phosphorylation of tankyrase is abrogated in cells treated with the GSK3 inhibitors LiCl and indirubin. Moreover, the electrophoretic mobility-shift of tankyrase arising from mitotic phosphorylation can be reproduced in vitro by GSK3-mediated phosphorylation. Lastly, mutagenesis study suggested that GSK3 in vitro phosphorylates tankyrase on S978, T982, S987, and S991, residues that comprise two adjacent copies of the canonical GSK3 phospho-acceptor motif [S/T]-X-X-X-[S/T]. Collectively, our data suggest that GSK3 contributes to mitotic tankyrase phosphorylation, raising the possibility that this phosphorylation might mediate some of the established roles of GSK3 in spindle assembly and mitotic progression.  相似文献   

17.
Peter W. Barlow 《Planta》1970,91(2):169-172
Summary Mitotic spindles in the root meristem of the Zea mays are smallest in the quiescent centre and increase in size the further they are from this region. the volume of mitotic cells follows a similar pattern. These findings are the result of differences in the metabolic activity of cells within the meristem. Observations also suggest that there may be fewer microtubules in the spindle of quiescent centre cells than in cells elsewhere, thus supporting the suggestion that this may be so made by Juniper and Barlow (1969).  相似文献   

18.
Bioreactors allowing culture medium perfusion overcome diffusion limitations associated with static culturing and provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed to cells will depend not only on the culture medium flow rate, but also on the scaffold three-dimensional (3D) micro-architecture. We developed a CFD model of the flow of culture medium through a 3D scaffold of homogeneous geometry, with the aim of predicting the shear stress acting on cells as a function of parameters that can be controlled during the scaffold fabrication process, such as the scaffold porosity and the pore size, and during the cell culture, such as the medium flow rate and the diameter of the perfused scaffold section. We built three groups of models corresponding to three pore sizes: 50, 100 and 150 microm. Each group was made of four models corresponding to 59%, 65%, 77%, and 89% porosity. A commercial finite-element code was used to set up and solve the problem and to analyze the results. The mode value of shear stress varied between 2 and 5 mPa, and was obtained for a circular scaffold of 15.5 mm diameter, perfused by a flow rate of 0.5 ml/min. The simulations showed that the pore size is a variable strongly influencing the predicted shear stress level, whereas the porosity is a variable strongly affecting the statistical distribution of the shear stresses, but not their magnitude. Our results provide a basis for the completion of more exhaustive quantitative studies to further assess the relationship between perfusion, at known micro-fluid dynamic conditions, and tissue growth in vitro.  相似文献   

19.
NADH oxidase activities measured with excised roots of dark-grown maize (Zea mays) seedlings and with isolated plasma membrane vesicles from roots of dark-grown maize oscillated with a regular period length of 24 min and were inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic [correction of dichorophenoxyacetic] acid. The activities also responded to orientation with respect to gravity and to imposed centrifugal forces. Turning the roots upside down resulted in stimulation of the activity with a lag of about 10 min. Returning the sections to the normal upright position resulted in a return to initial rates. The activity was stimulated reversibly to a maximum of about 2-fold with isolated plasma membrane vesicles, when subjected to centrifugal forces of 25 to 250 x g for 1 to 4 min duration. These findings are the first report of a gravity-responsive enzymatic activity of plant roots inhibited by auxin and potentially related to the gravity-induced growth response.  相似文献   

20.
Limited knowledge exists regarding the forces which act on devices implanted to the heart's mitral valve. Developing a transducer to measure the peak force magnitudes, time rates of change, and relationship with left ventricular pressure will aid in device development. A novel force transducer was developed and implanted in the mitral valve annulus of an ovine subject. In the post-cardioplegic heart, septal-lateral and transverse forces were continuously measured for cardiac cycles reaching a peak left ventricular pressure of 90 mmHg. Each force was seen to increase from ventricular diastole and found to peak at mid-systole. The mean change in septal-lateral and transverse forces throughout the cardiac cycle was 4.4±0.2 N and 1.9±0.1 N respectively. During isovolumetric contraction, the septal-lateral and transverse forces were found to increase at peak rate of 143±8 N/s and 34±9 N/s, respectively. Combined, this study provides the first quantitative assessment of septal-lateral and transverse forces within the contractile mitral annulus. The developed transducer was successful in measuring these forces whose methods may be extended to future studies. Upon additional investigation, these data may contribute to the safer development and evaluation of devices aimed to repair or replace mitral valve function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号