首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.  相似文献   

3.
环形染色体构象捕获(4c)技术实现了在全基因组范围内捕获与4c靶位点发生相互作用的基因座位,因而通过4C相关技术可以进一步研究靶基因座位在细胞核内的空间组织形式。该文以ABclllb基因座位作为4C分析的靶位点,通过优化4C分析的反向巢式PCR扩增条件,实现4C分析PCR的高效扩增:并通过有限克隆筛选与普通测序分析相结合的方法,在全基因组范围内捕获到一些与BcHlb基因座位发生潜在相互作用的基因座位。这些基因座位与靶位点间的相互作用既有发生在相同染色体内的,也有发生在不同染色体之间的。这些基因座位间的相互作用表明了Bclllb基因座位在细胞核内复杂的空间组织形式。  相似文献   

4.
CCCTC-binding factor (CTCF) is a master organizer of genome spatial organization and plays an important role in mediating extensive chromatin interactions. Circular chromosome conformation capture (4C) is a high-throughput approach that allows genome-wide screening for unknown potential interaction partners. Using a conserved CTCF binding site on the Bcl11b locus as bait, an interaction partner at the Arhgap6 locus on a different chromosome was identified by 4C. Additional experiments verified that the interchromatin interaction between the Bcl11b and Arhgap6 loci was cell-type specific, which was cooperatively mediated by CTCF and cohesin. Functional analysis showed that the interchromatin interaction partners were repressing regulatory elements. These results indicate that interaction chromatin loops regulate the expression of the relevant genes.  相似文献   

5.
The spatial organization of chromosomes inside the cell nucleus is still poorly understood. This organization is guided by intra- and interchromosomal contacts and by interactions of specific chromosomal loci with relatively fixed nuclear 'landmarks' such as the nuclear envelope and the nucleolus. Researchers have begun to use new molecular genome-wide mapping techniques to uncover both types of molecular interactions, providing insights into the fundamental principles of interphase chromosome folding.  相似文献   

6.
7.
8.
9.
ABSTRACT: BACKGROUND: Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their average spatial proximity. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to take into account these unwanted but inevitable events. RESULTS: Careful analysis of the raw data generated previously for budding yeast Saccharomyces cerevisiae led to the identification of three main biases affecting the final datasets, including an original bias resulting from the circularization of DNA molecules exhibiting specific lengths in accordance with laws from polymer physics. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. CONCLUSIONS: We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the biases inherent to the technique and proposed a simple normalization procedure to analyze them. Such an approach can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with cell population presenting highest levels of homogeneity will prove useful in this regards.  相似文献   

10.
11.
三维基因组学是一门研究基因组三维空间结构与功能的新兴学科,主要研究基因组序列在细胞核内的三维空间构象,及其对DNA复制、DNA重组、基因表达调控等生物过程的生物学效应。自染色质构象捕获技术(3C)出现后,三维基因组学相关研究领域飞速发展。借助于3C及其衍生技术、Hi-C和ChIA-PET等技术,科学家能对各类物种的三维基因组进行更为深入的研究,从而揭示微生物、植物和动物基因组的空间构象、染色质的相互作用模式、转录调控以及不同生物学性状的形成机制;挖掘与生命活动和疾病相关的关键基因和信号通路;推动农业科学、生命科学和医学等领域的快速发展。文中就三维基因组学研究进展作一综述,主要阐述三维基因组学的概念和研究技术的发展及其在农业科学、生命科学和医学等领域的应用,尤其是肿瘤领域所取得的阶段性研究成果。  相似文献   

12.
13.
The chromosomal location of an 8.2-kb genomic fragment encompassing a cluster of four human tRNA genes has been determined by three complementary methods including Southern analysis of human/rodent somatic cell hybrids, in situ hybridization, and genetic linkage analysis. This tRNA cluster (TRP1, TRP2, and TRL1) is located near the T-cell receptor alpha (TCRA) locus at 14q11, and several RFLPs were detected at this site. These RFLPs and those at the TCRA and MYH7 (cardiac beta-MHC gene) loci have been used to type all informative members of the CEPH pedigrees. This has permitted ordering of these three gene loci and two anonymous probes (D14S26 and D14S25) in a 20-cM interval just below the centromere of chromosome 14. Based upon the chromosomal location and the polymorphisms at this site, one or more members of this gene cluster could serve as a useful anchor locus on chromosome 14.  相似文献   

14.
Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.  相似文献   

15.
16.
J J Rossi  A Landy 《Cell》1979,16(3):523-534
  相似文献   

17.
Chromosomes are not positioned randomly within a nucleus, but instead, they adopt preferred spatial conformations to facilitate necessary long-range gene–gene interactions and regulations. Thus, obtaining the 3D shape of chromosomes of a genome is critical for understanding how the genome folds, functions and how its genes interact and are regulated. Here, we describe a method to reconstruct preferred 3D structures of individual chromosomes of the human genome from chromosomal contact data generated by the Hi-C chromosome conformation capturing technique. A novel parameterized objective function was designed for modeling chromosome structures, which was optimized by a gradient descent method to generate chromosomal structural models that could satisfy as many intra-chromosomal contacts as possible. We applied the objective function and the corresponding optimization method to two Hi-C chromosomal data sets of both a healthy and a cancerous human B-cell to construct 3D models of individual chromosomes at resolutions of 1 MB and 200 KB, respectively. The parameters used with the method were calibrated according to an independent fluorescence in situ hybridization experimental data. The structural models generated by our method could satisfy a high percentage of contacts (pairs of loci in interaction) and non-contacts (pairs of loci not in interaction) and were compatible with the known two-compartment organization of human chromatin structures. Furthermore, structural models generated at different resolutions and from randomly permuted data sets were consistent.  相似文献   

18.
19.
Ren L  Wang Y  Shi M  Wang X  Yang Z  Zhao Z 《PloS one》2012,7(2):e31416
Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.  相似文献   

20.
The chromosome conformation capture technique is used to monitor intra- and intermolecular chromosomal associations. By introducing an adaptation of this technique, Ling and colleagues have identified an unexpected coassociation between two loci on separate chromosomes in mouse nuclei, the imprinted Igf2-H19 locus of chromosome 7 and the Wsb1-Nf1 locus of chromosome 11. Strikingly, this interaction is CCCTC-binding factor (CTCF)-dependent and strictly allele specific. These findings extend our appreciation for genome organization and its influence on gene expression and imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号