首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.  相似文献   

2.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

3.
Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stress activates NHE1-dependent Na(+)/H(+) exchange, and NHE1-ERM interaction is required for cell survival signaling. Apoptotic stimuli induced NHE1-regulated Na(+)/H(+) transport, as demonstrated by ethyl-N-isopropyl-amiloride-inhibitable, intracellular alkalinization. Ectopic NHE1, but not NHE3, expression rescued NHE1-null cells from apoptosis induced by staurosporine or N-ethylmaleimide-stimulated KCl efflux. When cells were subjected to apoptotic stress, NHE1 and phosphorylated ERM physically associated within the cytoskeleton-enriched fraction, resulting in activation of the pro-survival kinase, Akt. NHE1-associated Akt activity and cell survival were inhibited in cells expressing ERM binding-deficient NHE1, dominant negative ezrin constructs, or ezrin mutants with defective binding to phosphoinositide 3-kinase, an upstream regulator of Akt. We conclude that NHE1 promotes cell survival by dual mechanisms: by defending cell volume and pH(i) through Na(+)/H(+) exchange and by functioning as a scaffold for recruitment of a signalplex that includes ERM, phosphoinositide 3-kinase, and Akt.  相似文献   

4.
Serum and glucocorticoid-regulated kinase 2 (sgk2) is 80% identical to the kinase domain of sgk1, an important mediator of mineralocorticoid-regulated sodium (Na(+)) transport in the distal nephron of the kidney. The expression pattern and role in renal function of sgk2 are virtually uncharacterized. In situ hybridization and immunohistochemistry of rodent kidney coupled with real-time RT-PCR of microdissected rat kidney tubules showed robust sgk2 expression in the proximal straight tubule and thick ascending limb of the loop of Henle. Sgk2 expression was minimal in distal tubule cells with aquaporin-2 immunostaining but significant in proximal tubule cells with Na(+)/H(+) exchanger 3 (NHE3) immunostaining. To ascertain whether mineralocorticoids regulate expression of sgk2 in a manner similar to sgk1, we examined sgk2 mRNA expression in the kidneys of adrenalectomized rats treated with physiological doses of aldosterone together with the glucocorticoid receptor antagonist RU486. Northern blot analysis and in situ hybridization showed that, unlike sgk1, sgk2 expression in the kidney was not altered by aldosterone treatment. Based on the observation that sgk2 is expressed in proximal tubule cells that also express NHE3, we asked whether sgk2 regulates NHE3 activity. We heterologously expressed sgk2 in opossum kidney (OKP) cells and measured Na(+)/H(+) exchange activity by Na(+)-dependent cell pH recovery. Constitutively active sgk2, but not sgk1, stimulated Na(+)/H(+) exchange activity by >30%. Moreover, the sgk2-mediated increase in Na(+)/H(+) exchange activity correlated with an increase in cell surface expression of NHE3. Together, these results suggest that the pattern of expression, regulation, and role of sgk2 within the mammalian kidney are distinct from sgk1 and that sgk2 may play a previously unrecognized role in the control of transtubular Na(+) transport through NHE3 in the proximal tubule.  相似文献   

5.
Enhanced Na(+)/H(+) exchange, measured as amiloride derivative-sensitive Na(+) and H(+) fluxes in cells with a preliminary acidified cytoplasm (Deltamu(H+)-induced Na(+)/H(+) exchange), is one of the most prominent intermediate phenotypes of altered vascular smooth muscle cell (VSMC) function in spontaneously hypertensive rats (SHR). Analysis of Na(+)/H(+) exchange in F(2) hybrids of SHR and normotensive rats seems to be the most appropriate approach in the search for the genetic determinants of abnormal activity of this carrier. However, the measurement of Deltamu(H+)-induced Na(+)/H(+) exchange is hardly appropriate for precise analysis of the carrier's activity in VSMC derived from several hundred F(2) hybrids. To overcome this problem, we compared the rate of (22)Na influx under baseline conditions and in Na(+)-loaded (ouabain-treated) VSMC. The dose-dependency of the rate of Deltamu(H+)-induced H(+) efflux as well as of (22)Na influx in control and ouabain-treated cells on ethylisopropylamiloride (EIPA) concentration were not different (K(0.5) approximately 0.3 microM), suggesting that these ion transport pathways are mediated by the same carrier. EIPA-sensitive (22)Na influx in Na(+)-loaded cells was approximately 6-fold higher than in ouabain-untreated VSMC and was increased by 50-70% in two different substrains of SHR. About the same increment of EIPA-sensitive (22)Na influx in Na(+)-loaded VSMC was observed in 5- to 6-week-old SHR (an age at which hypertension has not yet developed) as well as in stroke-prone SHR (SHRSP) with severe hypertension, indicating that the heightened activity of Na(+)/H(+) exchange is not a consequence of long-term blood pressure elevation. To examine whether or not the augmented activity of Na(+)/H(+) exchange in SHR is caused by mutation of NHE1, i.e. the only isoform of this carrier expressed in VSMC, we undertook single-stranded conformational polymorphism analysis of 23 NHE1 cDNA fragments from SHR and SHRSP and sequencing of the 456-2421 NHE1 cDNA fragment. This study did not reveal any mutation in the entire coding region of NHE1. The lack of mutation in the coding region of NHE1 indicates that the augmented activity of the ubiquitous Na(+)/H(+) exchanger in primary hypertension is caused by altered regulation of carrier turnover number or/and its plasma membrane content.  相似文献   

6.
We investigated regulation of the type 1 isoform of the Na(+)/H(+) exchanger by phosphorylation. Four specific groups of serine and threonine residues in the regulatory carboxyl-terminal tail were mutated to alanine residues: group 1, S693A; group 2, T718A and S723A/S726A/S729A; group 3, S766A/S770A/S771A; and group 4, T779A and S785A. The proteins were expressed in Na(+)/H(+) exchanger-deficient cells, and the activity was characterized. All of the mutants had proper expression, localization, and normal basal activity relative to wild type NHE1. Sustained intracellular acidosis was used to activate NHE1 via an ERK-dependent pathway that could be blocked with the MEK inhibitor U0126. Immunoprecipitation of (32)P-labeled Na(+)/H(+) exchanger from intact cells showed that sustained intracellular acidosis increased Na(+)/H(+) exchanger phosphorylation in vivo. This was blocked by U0126. The Na(+)/H(+) exchanger activity of mutants 1 and 2 was stimulated similar to wild type Na(+)/H(+) exchanger. Mutant 4 showed a partially reduced level of activation. However, mutant 3 was not stimulated by sustained intracellular acidosis, and loss of stimulation of activity correlated to a loss of sustained acidosis-mediated phosphorylation in vivo. Mutation of the individual amino acids within mutant 3, Ser(766), Ser(770), and Ser(771), showed that Ser(770) and Ser(771) are responsible for mediating increases in NHE1 activity through sustained acidosis. Both intact Ser(770) and Ser(771) were required for sustained acidosis-mediated activation of NHE1. Our results suggest that amino acids Ser(770) and Ser(771) mediate ERK-dependent activation of the Na(+)/H(+) exchanger in vivo.  相似文献   

7.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

8.
Allosteric control of Na(+)/H(+) exchange by intracellular protons ensures rapid and accurate regulation of the intracellular pH. Although this allosteric effect was heretofore thought to occur almost instantaneously, we report here the occurrence of a slower secondary activation of the epithelial Na(+)/H(+) exchanger (NHE)-3 isoform. This slow activation mode developed over the course of minutes and was unique to NHE3 and the closely related isoform NHE5, but was not observed in NHE1 or NHE2. Activation of NHE3 was not due to increased density of exchangers at the cell surface, nor was it accompanied by detectable changes in phosphorylation. The association of NHE3 with the cytoskeleton, assessed by its retention in the detergent-insoluble fraction, was similarly unaffected by acidification. In contrast to the slow progressive activation elicited by acidification, deactivation occurred very rapidly upon restoration of the physiological pH. We propose that NHE3 undergoes a slow pH-dependent transition from a less active to a more active state, likely by changing its conformation or state of association.  相似文献   

9.
The sodium-hydrogen exchanger regulatory factor (NHERF) is an essential cofactor for cAMP-mediated inhibition of the Na(+)/H(+) exchanger isoform, NHE3, in renal brush border membranes. NHERF is also an ezrin-binding protein. To define the functional importance of ezrin binding for NHERF's function as a NHE3 regulator, we transfected stable PS120 cells expressing NHE3 with plasmids encoding WT and truncated mouse NHERF proteins. Co-immunoprecipitation established that in PS120 cells, NHE3 bound to full-length NHERF(1-355), the C-terminal domain, NHERF(147-355), and NHERF(1-325), which lacks the proposed ezrin-binding domain. The N-terminal domain, NHERF(1-146), failed to bind the antiporter. Ezrin was also co-immunoprecipitated with NHERF(1-355) but not with NHERF(1-325). 8Br-cAMP inhibited NHE3 activity in cells that expressed NHERF(1-355) or NHERF(147-355) but had no effect on the formation of NHE3-NHERF or NHERF-ezrin complexes. Na(+)/H(+) exchange was unaffected by 8Br-cAMP in cells that expressed NHERF(1-146) or NHERF(1-325). NHE3 phosphorylation in vivo was enhanced by 8Br-cAMP only in cells where NHERF bound to both NHE3 and ezrin. The data suggest that NHERF functions as a scaffold to link NHE3 with ezrin and that this multiprotein complex is essential for cAMP-mediated phosphorylation of NHE3 and the inhibition of Na(+)/H(+) exchange.  相似文献   

10.
11.
The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na(+)/H(+) exchanger 1 (NHE1). CaN is a Ca(2+)-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the (715)PVITID(720) sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na(+)/H(+) exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy.  相似文献   

12.
We tested whether NHE3 and NHE2 Na(+)/H(+) exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na(+)/H(+) exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na(+)/H(+) exchange function (NH(4)-prepulse acid load sustained in Na(+)-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na(+) removal revealed that only NHE3-CFP translocated when medium Na(+) was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na(+)-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.  相似文献   

13.
Parathyroid hormone (PTH) is a potent inhibitor of mammalian renal proximal tubule Na(+) transport via its action on the apical membrane Na(+)/H(+) exchanger NHE3. In the opossum kidney cell line, inhibition of NHE3 activity was detected from 5 to 45 min after PTH addition. Increase in NHE3 phosphorylation on multiple serines was evident after 5 min of PTH, but decrease in surface NHE3 antigen was not detectable until after 30 min of PTH. The decrease in surface NHE3 antigen was due to increased NHE3 endocytosis. When endocytic trafficking was arrested with a dominant negative dynamin mutant (K44A), the early inhibition (5 min) of NHE3 activity by PTH was not affected, whereas the late inhibition (30 min) and decreased surface NHE3 antigen induced by PTH were abrogated. We conclude that PTH acutely inhibits NHE3 activity in a biphasic fashion by NHE3 phosphorylation followed by dynamin-dependent endocytosis.  相似文献   

14.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

15.
Li X  Liu Y  Alvarez BV  Casey JR  Fliegel L 《Biochemistry》2006,45(7):2414-2424
Carbonic anhydrase II (CAII) binds to and regulates transport by the NHE1 isoform of the mammalian Na(+)/H(+) exchanger. We localized and characterized the CAII binding region on the C-terminal tail of the Na(+)/H(+) exchanger. CAII did not bind to acidic sequences in NHE1 that were similar to the CAII binding site of bicarbonate transporters. Instead, by expressing a variety of fusion proteins of the C-terminal region of the Na(+)/H(+) exchanger, we demonstrated that CAII binds to the penultimate group of 13 amino acids of the cytoplasmic tail. Within this region, site-specific mutagenesis demonstrated that amino acids S796 and D797 form part of a novel CAII binding site. Phosphorylation of the C-terminal 26 amino acids by heart cell extracts did not alter CAII binding to this region, but phosphorylation greatly increased CAII binding to a protein containing the C-terminal 182 amino acids of NHE1. This suggested that an upstream region of the cytoplasmic tail acts as an inhibitor of CAII binding to the penultimate group of 13 amino acids. The results demonstrate that a novel phosphorylation-regulated CAII binding site exists in distal amino acids of the NHE1 tail.  相似文献   

16.
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).  相似文献   

17.
Na absorption across the cornified, multilayered, and squamous rumen epithelium is mediated by electrogenic amiloride-insensitive transport and by electroneutral Na transport. High concentrations of amiloride (>100 μM) inhibit Na transport, indicating Na(+)/H(+) exchange (NHE) activity. The underlying NHE isoform for transepithelial Na absorption was characterized by mucosal application of the specific inhibitor HOE642 for NHE1 and S3226 for NHE3 in Ussing chamber studies with isolated epithelia from bovine and sheep forestomach. S3226 (1 μM; NHE3 inhibitor) abolished electroneutral Na transport under control conditions and also the short-chain fatty acid-induced increase of Na transport via NHE. However, HOE642 (30 μM; NHE1 inhibitor) did not change Na transport rates. NHE3 was immunohistochemically localized in membranes of the upper layers toward the lumen. Expression of NHE1 and NHE3 has been previously demonstrated by RT-PCR, and earlier experiments with isolated rumen epithelial cells have shown the activity of both NHE1 and NHE3. Obviously, both isoforms are involved in the regulation of intracellular pH, pH(i). However, transepithelial Na transport is only mediated by apical uptake via NHE3 in connection with extrusion of Na by the basolaterally located Na-K-ATPase. The missing involvement of NHE1 in transepithelial Na transport suggests that the proposed "job sharing" in epithelia between these two isoforms probably also applies to forestomach epithelia: NHE3 for transepithelial transport and NHE1 for, among others, pH(i) and volume regulation.  相似文献   

18.
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.  相似文献   

19.
We previously showed that Na(+)/H(+)-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) co-immunoprecipitated with the human kappa opioid receptor (hKOR) and that its overexpression blocked the kappa agonist U50,488H-induced hKOR down-regulation by enhancing recycling. Here, we show that glutathione S-transferase (GST)-hKOR C-tail interacted with purified NHERF-1/EBP50, whereas GST or GST-C-tails of micro or delta opioid receptors did not. GST-hKOR C-tail, but not GST, bound HA-NHERF-1/EBP50 transfected into Chinese hamster ovary cells and endogenous NHERF-1/EBP50 in opossum kidney proximal tubule epithelial cells (OK cells). The PDZ domain I, but not II, of NHERF-1/EBP50 was involved in the interaction. Association of NHERF-1/EBP50 with hKOR C-tail enhanced oligomerization of NHERF-1/EBP50. NHERF-1/EBP50 was previously shown to regulate Na(+)/H(+)-exchanger 3 (NHE3) activities in OK cells. We found stimulation of OK cells with U50,488H significantly enhanced Na(+)/H(+) exchange, which was blocked by naloxone but not by pertussis toxin pretreatment, indicating it is mediated by KORs but independent of G(i)/G(o) proteins. In OKH cells, a subclone of OK cells expressing a much lower level of NHERF-1/EBP50, U50,488H had no effect on Na(+)/H(+) exchange, although it enhanced p44/42 mitogen-activated protein kinase phosphorylation via G(i)/G(o) proteins similar to that in OK cells. Stable transfection of NHERF-1/EBP50 into OKH cells restored the stimulatory effect of U50,488H upon Na(+)/H(+) exchange. Thus, NHERF-1/EBP50 binds directly to KOR, and this association plays an important role in accelerating Na(+)/H(+) exchange. We hypothesize that binding of the KOR to NHERF-1/EBP50 facilitates oligomerization of NHERF-1/EBP50, leading to stimulation of NHE3. This study provides the first direct evidence that a G protein-coupled receptor through association with NHERF-1/EBP-50 stimulates NHE3.  相似文献   

20.
The Na(+)/H(+) exchanger NHE3 plays a central role in intravascular volume and acid-base homeostasis. Ion exchange activity is conferred by its transmembrane domain, while regulation of the rate of transport by a variety of stimuli is dependent on its cytosolic C-terminal region. Liposome- and cell-based assays employing synthetic or recombinant segments of the cytosolic tail demonstrated preferential association with anionic membranes, which was abrogated by perturbations that interfere with electrostatic interactions. Resonance energy transfer measurements indicated that segments of the C-terminal domain approach the bilayer. In intact cells, neutralization of basic residues in the cytosolic tail by mutagenesis or disruption of electrostatic interactions inhibited Na(+)/H(+) exchange activity. An electrostatic switch model is proposed to account for multiple aspects of the regulation of NHE3 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号