首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Passive transfer of antibodies can be protective in the simian human immunodeficiency virus (SHIV) – rhesus macaque challenge model. The human monoclonal antibody IgG1 b12 neutralizes human immunodeficiency type 1 (HIV-1) in vitro and protects against challenge by SHIV. Our hypothesis is that neutralizing antibodies can only completely inactivate a relatively small number of infectious virus.

Methods And Findings

We have used GHOST cell assays to quantify individual infectious events with HIV-1SF162 and its SHIV derivatives: the relatively neutralization sensitive SHIVSF162P4 isolate and the more resistant SHIVSF162P3. A plot of the number of fluorescent GHOST cells with increasing HIV-1SF162 dose is not linear. It is likely that with high-dose inocula, infection with multiple virus produces additive fluorescence in individual cells. In studies of the neutralization kinetics of IgG1 b12 against these isolates, events during the absorption phase of the assay, as well as the incubation phase, determine the level of neutralization. It is possible that complete inactivation of a virus is limited to the time it is exposed on the cell surface. Assays can be modified so that neutralization of these very low doses of virus can be quantified. A higher concentration of antibody is required to neutralize the same dose of resistant SHIVSF162P3 than the sensitive SHIVSF162P4. In the absence of selection during passage, the density of the CCR5 co-receptor on the GHOST cell surface is reduced. Changes in the CD4 : CCR5 density ratio influence neutralization.

Conclusions

Low concentrations of IgG1 b12 completely inactivate small doses of the neutralization resistant SHIV SF162P3. Assays need to be modified to quantify this effect. Results from modified assays may predict protection following repeated low-dose shiv challenges in rhesus macaques. It should be possible to induce this level of antibody by vaccination so that modified assays could predict the outcome of human trials.  相似文献   

2.

Background

Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays.

Methods

Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression.

Findings

PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent.

Conclusions

The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.  相似文献   

3.
Ding H  Tsai C  Zhou F  Buchy P  Deubel V  Zhou P 《PloS one》2011,6(3):e17821

Background

The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined.

Methodology/Principal Findings

In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge.

Conclusions/Significance

Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection.  相似文献   

4.
5.

Background

Antibodies targeting merozoites are important in protection from malaria. Therefore, merozoite surface proteins are attractive vaccine candidates. There is a need for robust functional assays to investigate mechanisms of acquired immunity and vaccine efficacy. To date, the study of merozoite phagocytosis has been confounded by the complexity and variability of in vitro assays.

Methodology/Principal findings

We have developed a new flow cytometry-based merozoite phagocytosis assay. An optimized merozoite preparation technique produced high yields of merozoites separated from haemozoin. Phagocytosis by the undifferentiated THP-1 monocytic cell line was mediated only by Fc Receptors, and was therefore ideal for studying opsonising antibody responses. The assay showed robust phagocytosis with highly diluted immune sera and strong inter-assay correlation. The assay effectively measured differences in opsonisation-dependent phagocytosis among individuals.

Conclusions/Significance

This highly reproducible assay has potential applications in assessing the role of opsonic phagocytosis in naturally acquired immunity and vaccine trials.  相似文献   

6.

Background

Neutralization sensitivity of HIV-1 virus to antibodies and anti-sera varies greatly between the isolates. Significant role of V1/V2 domain as a global neutralization sensitivity regulator has been suggested. Recent X-ray structures revealed presence of well-defined tertiary structure within this domain but also demonstrated partial disorder and conformational heterogeneity.

Methods

Correlations of neutralization sensitivity with the conformational propensities for beta-strand and alpha-helix formation over the entire folded V1/V2 domain as well as within sliding 5-residue window were investigated. Analysis was based on a set of neutralization data for 106 HIV isolates for which consistent neutralization sensitivity measurements against multiple pools of human immune sera have been previously reported.

Results

Significant correlation between beta-sheet formation propensity of the folded segments of V1/V2 domain and neutralization sensitivity was observed. Strongest correlation peaks localized to the beta-strands B and C. Correlation persisted when subsets of HIV isolates belonging to clades B, C and circulating recombinant form BC where analyzed individually or in combinations.

Conclusions

Observed correlations suggest that stability of the beta-sheet structure and/or degree of structural disorder in the V1/V2 domain is an important determinant of the global neutralization sensitivity of HIV-1 virus. While specific mechanism is to yet to be investigated, plausible hypothesis is that less ordered V1/V2s may have stronger masking effect on various neutralizing epitopes, perhaps effectively occupying larger volume and thereby occluding antibody access.  相似文献   

7.

Background

The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.

Methodology/Principal Findings

We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.

Conclusion/Significance

This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production.  相似文献   

8.

Background

Several serological assays have been developed to detect antibodies elicited against infections with oncogenic human papillomavirus (HPV) type 16. The association between antibody levels measured by various assays and subsequent HPV infection risk may differ. We compared HPV16-specific antibody levels previously measured by a virus-like particle (VLP)-based direct enzyme-linked immunoassay (ELISA) with levels measured by additional assays and evaluated the protection against HPV16 infection conferred at different levels of the assays.

Methodology/Principal Findings

Replicate enrollment serum aliquots from 388 unvaccinated women in the control arm of the Costa Rica HPV vaccine trial were measured for HPV16 seropositivity using three serological assays: a VLP-based direct ELISA; a VLP-based competitive Luminex immunoassay (cLIA); and a secreted alkaline phosphatase protein neutralization assay (SEAP-NA). We assessed the association of assay seropositivity and risk of subsequent HPV16 infection over four years of follow-up by calculating sampling-adjusted odds ratios (OR) and HPV16 seropositivity based on standard cutoff from the cLIA was significantly associated with protection from subsequent HPV16 infection (OR = 0.48, CI = 0.27–0.86, compared with seronegatives). Compared with seronegatives, the highest seropositive tertile antibody levels from the direct ELISA (OR = 0.53, CI = 0.28–0.90) as well as the SEAP-NA (OR = 0.20, CI = 0.06, 0.64) were also significantly associated with protection from HPV16 infection.

Conclusions/Significance

Enrollment HPV16 seropositivity by any of the three serological assays evaluated was associated with protection from subsequent infection, although cutoffs for immune protection were different. We defined the assays and seropositivity levels after natural infection that better measure and translate to protective immunity.  相似文献   

9.

Background

For clinical development of a novel multivalent OspA vaccine against Lyme borreliosis, serological assays are required which can be used to establish immune correlates of protection against infection with Borrelia.

Methods

Four assays (an OspA IgG ELISA, a competitive inhibition (CI) ELISA, a Borrelia surface-binding (SB) assay and a Borrelia killing assay) were used to evaluate the correlation between immune responses induced by rOspA 1/2 (a chimeric immunogen containing protective epitopes from OspA serotypes 1 and 2), and protective immunity against infection by B. burgdorferi s.s. (OspA-1) and B. afzelii (OspA-2). Mice were immunized with OspA 1/2 doses ranging from 0.3 ng to 100 ng, to induce a range of OspA antibody titers, and exposed to needle challenge with B. burgdorferi s.s. or tick challenge with B. afzelii. Receiver operator characteristics (ROC) curves were constructed for each assay, and the area under the curve (AUC), sensitivity, specificity and Youden Index were calculated. Potential cutoff antibody titers which could be used as correlates of vaccine-induced protection were derived from the maximum Youden Index.

Results

Immunization with OspA-1/2 provided dose-dependent protection against infection with B. burgdorferi s.s. and B. afzelii. Antibody responses detected by all four assays were highly significantly correlated with protection from infection by either B. burgdorferi s.s. (p<0.0001 to 0.0062) or B. afzelii (p<0.0001). ROC analyses of the diagnostic effectiveness of each assay showed the AUC to range between 0.95 and 0.79, demonstrating that all assays distinguish well between infected and non-infected animals. Based on sensitivity, specificity and AUC, the OspA IgG ELISA and SB assays best discriminated between infected and non-infected animals.

Conclusions

All four assays differentiate well between Borrelia-infected and non-infected animals. The relatively simple, high throughput IgG ELISA would be suitable to establish immune correlates of protection for the novel OspA vaccine in clinical trials.  相似文献   

10.

Background

Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control.

Methodology/Principal Findings

We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials.

Conclusions/Significance

We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans.  相似文献   

11.

Objectives

To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a.

Methods

We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology.

Results

Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered.

Conclusions

Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity.  相似文献   

12.

Introduction

Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses.

Methods

In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose.

Results

Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated.

Conclusion

Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed.

Trial Registration

ClinicalTrials.gov NCT01044095  相似文献   

13.

Background

The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.

Methods and Findings

We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.

Conclusions

This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.  相似文献   

14.

Background

Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset.

Principal Findings

HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4+ T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope.

Conclusions

Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge.  相似文献   

15.

Background

The current spread of pandemic influenza A(H1N1)v virus necessitates an intensified surveillance of influenza virus infections worldwide. So far, in many laboratories routine diagnostics were limited to generic influenza virus detection only. To provide interested laboratories with real-time PCR assays for type and subtype identification, we present a bundle of PCR assays with which any human influenza A and B virus can be easily identified, including assays for the detection of the pandemic A(H1N1)v virus.

Principal Findings

The assays show optimal performance characteristics in their validation on plasmids containing the respective assay target sequences. All assays have furthermore been applied to several thousand clinical samples since 2007 (assays for seasonal influenza) and April 2009 (pandemic influenza assays), respectively, and showed excellent results also on clinical material.

Conclusions

We consider the presented assays to be well suited for the detection and subtyping of circulating influenza viruses.  相似文献   

16.

Background

Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus.

Results

Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses.

Conclusion

Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus.  相似文献   

17.

Background

Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine.

Methodology/Principal Findings

A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9.

Conclusions/Significance

NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.  相似文献   

18.

Background

Enterovirus 71 (EV71) is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia–Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear.

Methods/Findings

In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs). Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC) located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment.

Conclusions

Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.  相似文献   

19.

Background

Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge.

Methods

We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus.

Results

Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species.

Conclusions

These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.  相似文献   

20.

Background

Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation.

Methodology/Principal Findings

Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified.

Conclusion/Significance

This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号