首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

2.

Objective

To determine that 1) an age-dependent loss of inducible autophagy underlies the failure to recover from AKI in older, adult animals during endotoxemia, and 2) pharmacologic induction of autophagy, even after established endotoxemia, is of therapeutic utility in facilitating renal recovery in aged mice.

Design

Murine model of endotoxemia and cecal ligation and puncture (CLP) induced acute kidney injury (AKI).

Setting

Academic research laboratory.

Subjects

C57Bl/6 mice of 8 (young) and 45 (adult) weeks of age.

Intervention

Lipopolysaccharide (1.5 mg/kg), Temsirolimus (5 mg/kg), AICAR (100 mg/kg). Measurements and Main Results: Herein we report that diminished autophagy underlies the failure to recover renal function in older adult mice utilizing a murine model of LPS-induced AKI. The administration of the mTOR inhibitor temsirolimus, even after established endotoxemia, induced autophagy and protected against the development of AKI.

Conclusions

These novel results demonstrate a role for autophagy in the context of LPS-induced AKI and support further investigation into like interventions that have potential to alter the natural history of disease.  相似文献   

3.

[Purpose]

Mood disorders such as anxiety and depression are prevalent psychiatric illness, but the role of 5HT1A in the anti-depressive effects of exercise has been rarely known yet. We investigated whether long-term exercise affected a depressive-like behavior and a hippocampal 5HT1A receptor-mediated cAMP/PKA/CREB signaling in depression mice model.

[Methods]

To induce depressive behaviors, mice were subjected to 14 consecutive days of restraint stress (2 hours/day). Depression-like behaviors were measured by forced swimming test (TST), and anxiety-like behavior was assessed by elevated plus maze (EPM). Treadmill exercise was performed with 19 m/min for 60 min/day, 5 days/week from weeks 0 to 8. Restraint stress was started at week 6 week and ended at week 8. To elucidate the role of 5HT1A in depression, the immunoreactivities of 5HT1A were detected in hippocampus using immunohistochemical technique.

[Results]

Chronic/repeated restraint stress induced behavioral anxiety and depression, such as reduced time and entries in open arms in EPM and enhanced immobility time in FST. These anxiety and depressive behaviors were ameliorated by chronic exercise. Also, these behavioral changes were concurrent with the deficit of 5HT1A and cAMP/PKA/CREB cascade in hippocampus, which was coped with chronic exercise.

[Conclusion]

These results suggest that chronic exercise may improve the disturbance of hippocampal 5HT1A-regulated cAMP/PKA/CREB signaling in a depressed brain, thereby exerting an antidepressive action.  相似文献   

4.
Welch TR  Blystone LW 《PloS one》2008,3(10):e3334

Background

The role of circulating complement in host defense and immune disease is well established. Although a number of cells and tissues are capable of synthesizing complement components locally, the importance of such local synthesis in immune disease has been difficult to establish.

Methodology/Principal Findings

We used bone marrow transplantation (BMT) between C3 knockout (C3KO) and wild type (WT) mice to construct animals that were discordant for systemic (hepatic) and local (monocytic) C3 synthetic capacity. An immune complex glomerulonephritis (GN) was then induced using intraperitoneal injections of horse spleen apoferritin (HSA) with a lipopolysaccharide (LPS) adjuvant. All HSA/LPS animals developed a proliferative GN with glomerular infiltration by monocytes. By sensitive ELISA, monocyte C3 synthesis could be detected in C3KO animals transplanted with WT bone marrow cells. Despite this, there were no significant differences among groups of mice in measures of clinical (proteinuria, renal function) or histologic (glomerular cellularity, crescents) disease severity.

Conclusions/Significance

In this model of GN, local synthesis of C3 by infiltrating cells does not appear to be of pathologic importance.  相似文献   

5.

Objective

Aging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. CuZnSOD has an important role to limit oxidative stress in the vasculature. Here we investigated the role of CuZnSOD for the modulation of ischemia-induced neovascularisation during aging.

Methods and Results

Hindlimb ischemia was surgically induced in young (2- month-old) or older (8-month-old) wild type (WT) and CuZnSOD−/− mice. We found that blood flow recovery after ischemia and vascular density in ischemic muscles were significantly reduced in older compared to young WT mice. Both in young and older mice, CuZnSOD deficiency led to a further reduction of neovascularization. Accordingly, the resulting neovascularisation potential in a young CuZnSOD−/− mouse was similar to that of an older WT mouse. Oxidative stress levels were also increased to similar levels in the ischemic muscles of young CuZnSOD−/− and older WT mice. To identify potential mechanisms involved, we investigated the effect of aging and CuZnSOD deficiency on the number and the function of endothelial progenitor cells (EPCs). Both aging and CuZnSOD deficiency were associated with reduced number of bone marrow and peripheral EPCs. The effect of moderate aging alone on specific functional activities of EPCs (migration, integration into tubules) was modest. However, CuZnSOD deficiency was associated with severe age-dependent defects in EPC functional activities.

Conclusions

CuZnSOD deficiency is associated with accelerated vascular aging and impaired ischemia-induced neovascularization. Our results suggest that in the context of aging, CuZnSOD has an essential role to protect against excessive oxidative stress in ischemic tissues and preserve the function of EPCs.  相似文献   

6.

Background

Increased mucus secretion is one of the important characteristics of the response to smoke inhalation injuries. We hypothesized that gel-forming mucins may contribute to the increased mucus production in a smoke inhalation injury. We investigated the role of c-Jun N-terminal kinase (JNK) in modulating smoke-induced mucus secretion.

Methods

We intubated mice and exposed them to smoke from burning cotton for 15 min. Their lungs were then isolated 4 and 24 h after inhalation injury. Three groups of mice were subjected to the smoke inhalation injury: (1) wild-type (WT) mice, (2) mice lacking JNK1 (JNK1-/- mice), and (3) WT mice administered a JNK inhibitor. The JNK inhibitor (SP-600125) was injected into the mice 1 h after injury.

Results

Smoke exposure caused an increase in the production of mucus in the airway epithelium of the mice along with an increase in MUC5AC gene and protein expression, while the expression of MUC5B was not increased compared with control. We found increased MUC5AC protein expression in the airway epithelium of the WT mice groups both 4 and 24 h after smoke inhalation injury. However, overproduction of mucus and increased MUC5AC protein expression induced by smoke inhalation was suppressed in the JNK inhibitor-treated mice and the JNK1 knockout mice. Smoke exposure did not alter the expression of MUC1 and MUC4 proteins in all 3 groups compared with control.

Conclusion

An increase in epithelial MUC5AC protein expression is associated with the overproduction of mucus in smoke inhalation injury, and that its expression is related on JNK1 signaling.  相似文献   

7.

Background

It is well known progesterone can have anxiolytic-like effects in animals in a number of different behavioral testing paradigms. Although progesterone is known to influence physiology and behavior by binding to classical intracellular progestin receptors, progesterone''s anxiety reducing effects have solely been attributed to its rapid non-genomic effects at the GABAA receptor. This modulation occurs following the bioconversion of progesterone to allopregnanolone. Seemingly paradoxical results from some studies suggested that the function of progesterone to reduce anxiety-like behavior may not be entirely clear; therefore, we hypothesized that progesterone might also act upon progestin receptors to regulate anxiety.

Methodology/Principal Findings

To test this, we examined the anxiolytic-like effects of progesterone in male rats using the elevated plus maze, a validated test of anxiety, and the light/dark chamber in the presence or absence of a progestin receptor antagonist, RU 486. Here we present evidence suggesting that the anxiolytic-like effects of progesterone in male rats can be mediated, in part, by progestin receptors, as these effects are blocked by prior treatment with a progestin receptor antagonist.

Conclusion/Significance

This indicates that progesterone can act upon progestin receptors to regulate anxiety-like behavior in the male rat brain.  相似文献   

8.

Background

Cystic fibrosis (CF) has many effects on the gastrointestinal tract and a common problem in this disease is poor nutrition. In the CF mouse there is an innate immune response with a large influx of mast cells into the muscularis externa of the small intestine and gastrointestinal dysmotility. The aim of this study was to evaluate the potential role of mast cells in gastrointestinal dysmotility using the CF mouse (Cftrtm1UNC, Cftr knockout).

Methodology

Wild type (WT) and CF mice were treated for 3 weeks with mast cell stabilizing drugs (ketotifen, cromolyn, doxantrazole) or were treated acutely with a mast cell activator (compound 48/80). Gastrointestinal transit was measured using gavage of a fluorescent tracer.

Results

In CF mice gastric emptying at 20 min post-gavage did not differ from WT, but was significantly less than in WT at 90 min post-gavage. Gastric emptying was significantly increased in WT mice by doxantrazole, but none of the mast cell stabilizers had any significant effect on gastric emptying in CF mice. Mast cell activation significantly enhanced gastric emptying in WT mice but not in CF mice. Small intestinal transit was significantly less in CF mice as compared to WT. Of the mast cell stabilizers, only doxantrazole significantly affected small intestinal transit in WT mice and none had any effect in CF mice. Mast cell activation resulted in a small but significant increase in small intestinal transit in CF mice but not WT mice.

Conclusions

The results indicate that mast cells are not involved in gastrointestinal dysmotility but their activation can stimulate small intestinal transit in cystic fibrosis.  相似文献   

9.

Background

Dietary supplementation with methyl donors can influence the programming of epigenetic patterns resulting in persistent alterations in disease susceptibility and behavior. However, the dietary effects of methyl donors on pain have not been explored. In this study, we evaluated the effects of dietary methyl donor content on pain responses in mice.

Methods

Male and female C57BL/6J mice were treated with high or low methyl donor diets either in the perinatal period or after weaning. Mechanical and thermal nociceptive sensitivity were measured before and after incision.

Results

Mice fed high or low methyl donor diets displayed equal weight gain over the course of the experiments. When exposed to these dietary manipulations in the perinatal period, only male offspring of dams fed a high methyl donor diet displayed increased mechanical allodynia. Hindpaw incision in these animals caused enhanced nociceptive sensitization, but dietary history did not affect the duration of sensitization. For mice exposed to high or low methyl donor diets after weaning, no significant differences were observed in mechanical or thermal nociceptive sensitivity either at baseline or in response to hindpaw incision.

Conclusions

Perinatal dietary factors such as methyl donor content may impact pain experiences in later life. These effects, however, may be specific to sex and pain modality.  相似文献   

10.
11.

Background

The α2-antiplasmin (α2AP) protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear.

Objectives

The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice.

Methods

The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior.

Results and Conclusions

The α2AP knockout (α2AP−/−) mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP−/− mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.  相似文献   

12.
Huang Y  Morozov A 《PloS one》2011,6(1):e16480

Background

Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown.

Methodology/Principal Findings

Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice.

Conclusion/Significance

These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.  相似文献   

13.

Background

Pseudomonas aeruginosa (PA) infection is involved in various lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. However, treatment of PA infection is not very effective in part due to antibiotic resistance. α1-antitrypsin (A1AT) has been shown to reduce PA infection in humans and animals, but the underlying mechanisms remain unclear. The goal of our study is to test whether a novel endogenous host defense protein, short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is involved in the therapeutic effect of A1AT during lung PA infection.

Method

SPLUNC1 knockout (KO) and littermate wild-type (WT) mice on the C57BL/6 background were intranasally infected with PA to determine the therapeutic effects of A1AT. A1AT was aerosolized to mice 2 hrs after the PA infection, and mice were sacrificed 24 hrs later. PA load and inflammation were quantified in the lung, and SPLUNC1 protein in bronchoalveolar lavage (BAL) fluid was examined by Western blot.

Results

In WT mice, PA infection significantly increased neutrophil elastase (NE) activity, but reduced SPLUNC1 protein in BAL fluid. Notably, PA-infected mice treated with A1AT versus bovine serum albumin (BSA) demonstrated higher levels of SPLUNC1 protein expression, which are accompanied by lower levels of NE activity, lung bacterial load, and pro-inflammatory cytokine production. To determine whether A1AT therapeutic effects are dependent on SPLUNC1, lung PA load in A1AT- or BSA-treated SPLUNC1 KO mice was examined. Unlike the WT mice, A1AT treatment in SPLUNC1 KO mice had no significant impact on lung PA load and pro-inflammatory cytokine production.

Conclusion

A1AT reduces lung bacterial infection in mice in part by preventing NE-mediated SPLUNC1 degradation.  相似文献   

14.

Background

Gut is the major source of endogenous bacteria causing infections in advanced cirrhosis. Intestinal barrier dysfunction has been described in cirrhosis and account for an increased bacterial translocation rate.

Hypothesis and Aims

We hypothesize that microbiota composition may be affected and change along with the induction of experimental cirrhosis, affecting the inflammatory response.

Animals and Methods

Progressive liver damage was induced in Balb/c mice by weight-controlled oral administration of carbon tetrachloride. Laparotomies were performed at weeks 6, 10, 13 and 16 in a subgroup of treated mice (n = 6/week) and control animals (n = 4/week). Liver tissue specimens, mesenteric lymph nodes, intestinal content and blood were collected at laparotomies. Fibrosis grade, pro-fibrogenic genes expression, gut bacterial composition, bacterial translocation, host''s specific butyrate-receptor GPR-43 and serum cytokine levels were measured.

Results

Expression of pro-fibrogenic markers was significantly increased compared with control animals and correlated with the accumulated dose of carbon tetrachloride. Bacterial translocation episodes were less frequent in control mice than in treated animals. Gram-positive anaerobic Clostridia spp count was decreased in treated mice compared with control animals and with other gut common bacterial species, altering the aerobic/anaerobic ratio. This fact was associated with a decreased gene expression of GPR43 in neutrophils of treated mice and inversely correlated with TNF-alpha and IL-6 up-regulation in serum of treated mice along the study protocol. This pro-inflammatory scenario favoured blood bacterial translocation in treated animals, showing the highest bacterial translocation rate and aerobic/anaerobic ratio at the same weeks.

Conclusions

Gut microbiota alterations are associated with the development of an inflammatory environment, fibrosis progression and bacterial translocation in carbon tetrachloride-treated mice.  相似文献   

15.

Background

Bone marrow microenvironment (niche) plays essential roles in the fate of hematopoietic stem cells (HSCs). Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR) is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP), and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown.

Objective

To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice).

Methods

Hematopoietic cell subpopulations in bone marrow (BM) and peripheral blood (PB) from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS+) transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS), cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively.

Results

The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered.

Conclusions

Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors the differentiation of myeloid over lymphoid lineage cells.  相似文献   

16.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

17.

Background & Aims

Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH.

Methods

To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies.

Results

In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes.

Conclusions

TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.  相似文献   

18.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

19.

Background

MicroRNA-21 (miR-21) is overexpressed in most inflammatory diseases, but its physiological role in gut inflammation and tissue injury is poorly understood. The goal of this work is to understand the role of miR-21 in colitis and damage progression of intestine in a genetically modified murine model.

Methods

Experimental colitis was induced in miR-21 KO and wild-type (WT) mice by 3.5% dextran sulphate sodium (DSS) administration for 7 days. Disease activity index(DAI), blood parameters, intestinal permeability, histopathologic injury, cytokine and chemokine production, and epithelial cells apoptosis were examined in colons of miR-21 KO and WT mice.

Results

miR-21 was overexpressed in intestine of inflammatory bowel diseases (IBD) and acute intestinal obstruction (AIO) patients when compared with normal intestinal tissues. Likewise, miR-21 was up-regulated in colon of IL-10 KO mice when compared with control mice. WT mice rapidly lost weight and were moribund 5 days after treatment with 3.5% DSS, while miR-21 KO mice survived for at least 6 days. Elevated leukocytes and more severe histopathology were observed in WT mice when compared with miR-21 KO mice. Elevated levels of TNF-α and macrophage inflammatory protein-2(MIP-2) in colon culture supernatants from WT mice exhibited significant higher than miR-21 KO mice. Furthermore, CD3 and CD68 positive cells, intestinal permeability and apoptosis of epithelial cells were significantly increased in WT mice when compared with miR-21 KO mice. Finally, we found that miR-21 regulated the intestinal barrier function through modulating the expression of RhoB and CDC42.

Conclusion

Our results suggest that miR-21 is overexpressed in intestinal inflammation and tissue injury, while knockout of miR-21 in mice improve the survival rate in DSS-induced fatal colitis through protecting against inflammation and tissue injury. Therefore, attenuated expression of miR-21 in gut may prevent the onset or progression of inflammatory bowel disease in patients.  相似文献   

20.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号