首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prox1 is a prospero-related homeobox gene. Prox1 is expressed in various internal organs and is related to those differentiations. Small fishes such as the zebrafish and the medaka are useful model animals in the clarification of the mechanism of development. The zebrafish prox1 is also identified, and it contributes to clarifying the function of prox1. However, it is necessary to note that many genes are duplicated in teleost fishes. In this study, we identified the orthologs of the mammalian prox1 gene in the medaka. The gene was also duplicated in the medaka, and we named it prox1a and prox1b. In silico analysis from the perspective of synteny indicated that medaka prox1a was similar to the prox1 gene of other vertebrates. Medaka prox1a was expressed in all internal organs that we have examined by RT-PCR. In contrast, medaka prox1b expression was limited to the brain, heart, liver, kidney, thymus, gill, testis, and ovary. This suggests that the two prox1 genes do not have a complementary relationship. In addition, we examined their expression patterns during embryonic development using whole-mount in situ hybridization. The expression pattern of prox1a showed a pattern similar to that of zebrafish prox1. In contrast, medaka prox1b was expressed asymmetrically in part of the central nervous system, especially strongly in the right side of the habenula.  相似文献   

2.
3.
Lymphatic vessel growth requires extensive remodeling of the extracellular matrix, a process hypothesized to be related to the expression and function of the matrix metalloproteinases. We used a protein based screening strategy to demonstrate increased matrix matalloproteinase-10 expression in human lymphatic endothelial cells undergoing collagen I induced tubulogenesis. Knock-down experiments showed that matrix metalloproteinase-10 regulated lymphatic endothelial cell tubulogenesis. β1 integrin signaling via the ERK/MAPK pathway increased matrix metalloproteinase-10 mRNA and protein expression in human lymphatic endothelial cells. These findings demonstrate a novel mechanism by which β1 integrin regulates matrix metalloproteinase-10 expression during lymphatic vessel remodeling.  相似文献   

4.
Lymphatic endothelial cells in tumors (T-LECs) are considered to have different characteristics from LECs in non-tumor tissues (N-LECs). However, differences between the two types have not been well analyzed at molecular level. In this report, we performed differential proteome analysis of T-LEC and N-LEC models prepared by cultivation of LECs in tumor conditioned medium. By expression profiling of identified proteins using tissue microarrays, reticulocalbin-1 was found to be expressed in clinical specimen-derived T-LECs and lung cancer cells but not N-LECs. It is suggested that reticulocalbin-1 may be an important molecule in understanding T-LEC function and control of lymphatic metastasis.  相似文献   

5.
6.
Sphingosine-1-phosphate receptor 1 (S1P1), a receptor for sphingosine-1-phosphate, has been shown to play an important role in the migration, proliferation, and survival of several types of cell including endothelial cells. Given that S1P1 signaling could serve as a therapeutic target, we evaluate the expression of S1P1 in formalin-fixed and paraffin-embedded sections from human tissues, using automated immunostainers (Ventana). The specificity of the polyclonal rabbit anti-human S1P1 antibody used in this study was defined by immunostaining of the vasculature in S1P 1 −/− and S1P 1 +/− mouse embryos. The antibody stained the newly formed vasculatures ex vivo in a serum-free matrix culture model using rat aortic rings. In human specimens, S1P1 was strongly expressed on the cell surface membrane of endothelial cells of blood and lymphatic vessels in all tissues examined. The expression of S1P1 was confirmed by the flow cytometric analysis and real time RT-PCR of an angiosarcoma cell line. This study indicates that S1P1 can be used as an immunohistochemical marker for human tissue endothelial cells.  相似文献   

7.
Aquaporin 1 (Aqp1) is a water channel protein, expressed widely in microvascular endothelial cells and implicated in mammalian tumor angiogenesis. However, its developmental expression has not yet been characterized in great detail. An enhancer trap screen was performed using a Tol2-derived GFP reporter in zebrafish embryos. An insertional Et(GBT-B1)tpl1 line was identified that has reporter insertion in the vicinity of the aqp1a gene. We further characterized the embryonic expression pattern of this GFP reporter line, as well as that of endogenous aqp1a. Both endogenous aqp1a and reporter GFP expression were restricted to the vascular endothelial cells within the dorsal aorta, cranial, intersegmental and other secondary vessels, but were absent in the axial venous vasculature. In addition, endogenous aqp1a expression was observed in both primitive and definitive hematopoietic erythroid progenitors, as well as in the otic vesicle, swim bladder, pneumatic duct, intestine and a subset of neurons within the retina and the midbrain-hindbrain region. We further show that gata1 and etsrp/etv2 function is required for hematopoietic and endothelial aqp1a expression, respectively. Aqp1a expression is restricted to endothelial and erythroid cells during early embryogenesis. The transgenic Et(GBT-B1)tpl1 line recapitulates endogenous endothelial aqp1a expression. Because currently very few reporter lines can differentiate between arterial and venous endothelial cells, the Et(GBT-B1)tpl1 transgenic line and characterization of the aqp1a expression pattern will be useful for future studies of endothelial and arterial-venous differentiation.  相似文献   

8.
The human gene AGTRL1 is an angiotensin II receptor-like gene expressed in vasculature, which acts as the receptor for the small peptide APELIN, and a co-receptor for Human Immunodeficiency Virus. Mammalian AGTRL1 has been shown to modulate cardiac contractility, venous and arterial dilation, and endothelial cell migration in vitro, but no role in the development of the vasculature, or other tissues, has been described. We report the identification and expression of the zebrafish ortholog of the human gene AGTRL1. Zebrafish agtrl1a is first expressed before epiboly in dorsal precursors. During epiboly it is expressed in the enveloping layer, yolk syncytial layer and migrating mesendoderm. During segmentation stages, expression is observed in epithelial structures such as adaxial cells, border cells of the newly formed somites, developing lens, otic vesicles and venous vasculature.  相似文献   

9.
Effector proteins secreted by oomycete and fungal pathogens have been inferred to enter host cells, where they interact with host resistance gene products. Using the effector protein Avr1b of Phytophthora sojae, an oomycete pathogen of soybean (Glycine max), we show that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protein into plant cells. Particle bombardment experiments demonstrate that these motifs function in the absence of the pathogen, indicating that no additional pathogen-encoded machinery is required for effector protein entry into host cells. Furthermore, fusion of the Avr1b RXLR-dEER domain to green fluorescent protein (GFP) allows GFP to enter soybean root cells autonomously. The conclusion that RXLR and dEER serve to transduce oomycete effectors into host cells indicates that the >370 RXLR-dEER-containing proteins encoded in the genome sequence of P. sojae are candidate effectors. We further show that the RXLR and dEER motifs can be replaced by the closely related erythrocyte targeting signals found in effector proteins of Plasmodium, the protozoan that causes malaria in humans. Mutational analysis of the RXLR motif shows that the required residues are very similar in the motifs of Plasmodium and Phytophthora. Thus, the machinery of the hosts (soybean and human) targeted by the effectors may be very ancient.  相似文献   

10.
Transforming growth factor-α (TGF-α), a member of the epidermal growth factor (EGF) family, binds to the EGF-receptor (EGF-R). The early expression and widespread distribution of TGF-α and EGF-R in the developing central nervous system (CNS) suggest that TGF-α may play a role in the developing CNS. To study possible effects of TGF-α on cholinergic differentiation in the basal forebrain, we cultured septal nuclei with adjacent basal forebrain from embryonic rat brain in the presence and absence of TGF-α. At the highest dose of TGF-α used (100 ng/mL), activity of choline acetyltransferase (ChAT; EC 2.3.1.6) and the number of cholinergic neurons doubled. However, because protein levels tripled, specific ChAT activity actually declined. To determine the mechanism accounting for the increase in ChAT, we labeled dividing precursors present in the cultures with a replication-deficient retrovirus expressing β-galactosidase in the presence and absence of TGF-α. By staining the cultures for both LacZ and ChAT, we determined that the precursor population expanded in size (individually labeled clones contained more cells), but the percentage of cholinergic neurons present in the clones was unchanged. Therefore, while TGF-α expands the precursor pool, it does not promote cholinergic differentiation. Interleukin-9, included to prompt neuronal differentiation, did not by itself increase ChAT activity, nor did it enhance the action of TGF-α. This was true even when basic fibroblast growth factor was included. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 405–412, 1998  相似文献   

11.
Liu YF  Zhang N  Yao HW  Pan XM  Ge M 《PloS one》2011,6(5):e19977
The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family.  相似文献   

12.
13.
Similar to mammalian proximal tubular cells, H(+)-ATPase rich (HR) cells in zebrafish skin and gills are also responsible for Na(+) uptake and acid secretion functions. However, the basolateral transport pathways in HR cells are still unclear. In the present study, we tested the hypothesis if there are specific slc4 members involved in basolateral ion transport pathways in HR cells. Fourteen isoforms were identified in the zebrafish(z) slc4 family, and the full-length cDNAs of two novel isoforms, zslc4a1b (anion exchanger, zAE1b) and zslc4a4b (Na(+)/HCO(3)(-) cotransporter, zNBCe1b), were sequenced. mRNA signals of zslc4a1b and zslc4a4b were mainly detected in certain groups of ionocytes in zebrafish skin/gills. Further double immunocytochemistry or in situ hybridization demonstrated that zAE1b, but not zNBCe1b, was localized to basolateral membranes of HR cells. Acclimation to low-Na(+) or acidic environments stimulated the mRNA expression of zslc4a1b in zebrafish gills, and loss-of-function of zslc4a1b with specific morpholinos caused significant decreases in both the whole body Na(+) content and the skin H(+) activity in the morphants. On the basis of these results, it was concluded that zAE1b, but not zNBCe1b, is involved in the basolateral transport pathways in Na(+) uptake/acid secretion mechanisms in zebrafish HR cells.  相似文献   

14.
Animal studies have demonstrated the ability of both sodium-hydrogen exchange inhibitors and angiotensin-converting enzyme inhibitors to reduce infarct size and preserve postischemic ventricular function following ischemia and reperfusion (IR) injury. Whether these interventions can also prevent IR-induced impairment of endothelial function in humans has not been investigated. We performed 2 separate double-blind, placebo-controlled, crossover studies. In the first study, 10 healthy volunteers were randomized to receive oral amiloride (10 mg) or a placebo. In a separate study, another group of volunteers (n = 10) was randomized to receive oral captopril (50 mg) or a placebo. At the time of the peak hemodynamic effect of the drug (3 and 1.5 h after administration of amiloride and captopril, respectively), endothelium-dependent, flow-mediated dilatation of the radial artery was measured before and after IR. IR significantly blunted flow-mediated dilatation in all groups (placebo: pre-IR: 6.8% ± 0.7%; post-IR: 2.9% ± 0.9%; P < 0.01; amiloride: pre-IR: 5.9% ± 0.6%; post-IR: 2.1% ± 1.3%; P = 0.01; captopril: pre-IR: 6.0% ± 0.5%; post-IR: 2.0% ± 0.6%; P < 0.01). In humans, neither 10 mg of oral amiloride nor 50 mg of oral captopril was able to provide protection against IR-induced endothelial dysfunction in the peripheral vasculature.  相似文献   

15.
Factors determining lymphatic differentiation in the adult organism are not yet well characterized. We have made the observation that mixed primary cultures of dermal blood endothelial cells (BEC) and lymphatic endothelial cells (LEC) grown under standard conditions change expression of markers during subculture: After passage 6, they uniformly express LEC-specific markers Prox-1 and podoplanin. Using sorted cells, we show that LEC but not BEC constitutively express IL-3, which regulates Prox-1 and podoplanin expression in LEC. The addition of IL-3 to the medium of BEC cultures induces Prox-1 and podoplanin. Blocking IL-3 activity in LEC cultures results in a loss of Prox-1 and podoplanin expression. In conclusion, endogenous IL-3 is required to maintain the LEC phenotype in culture, and the addition of IL-3 to BEC appears to induce transdifferentiation of BEC into LEC.  相似文献   

16.
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.  相似文献   

17.
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.  相似文献   

18.
There have been numerous proposals suggesting that whole-culture methods - in which all cells in a growing culture are treated identically - can synchronize cells. An explicit defense of these methods has been presented (Spellman and Sherlock, this issue, pp. 270-273, ). Here, this defense of whole-culture 'synchronization' is subjected to a critical evaluation leading to the conclusion that whole-culture synchronization cannot synchronize cells - at all. Whole-culture methods cannot produce a set of cells that reflects the size and genome composition of cells of any particular cell-cycle age during the normal cell cycle. Thus, in addition to the well-recognized problem of artifacts, it is proposed that experiments using whole-culture treatments (usually starvation or inhibition methods) are not suitable for cell-cycle analysis because these methods do not produce a synchronized culture.  相似文献   

19.
The common lymphatic endothelial and vascular endothelial receptor (CLEVER-1; also known as FEEL-1 and stabilin-1) is a recycling and intracellular trafficking receptor with multifunctional properties. In this study, we demonstrate increased endothelial expression of CLEVER-1/stabilin-1 at sites of leukocyte recruitment to the inflamed human liver including sinusoids, septal vessels, and lymphoid follicles in inflammatory liver disease and tumor-associated vessels in hepatocellular carcinoma. We used primary cultures of human hepatic sinusoidal endothelial cells (HSEC) to demonstrate that CLEVER-1/stabilin-1 expression is enhanced by hepatocyte growth factor but not by classical proinflammatory cytokines. We then showed that CLEVER-1/stabilin-1 supports T cell transendothelial migration across HSEC under conditions of flow with strong preferential activity for CD4 FoxP3(+) regulatory T cells (Tregs). CLEVER-1/stabilin-1 inhibition reduced Treg transendothelial migration by 40% and when combined with blockade of ICAM-1 and vascular adhesion protein-1 (VAP-1) reduced it by >80%. Confocal microscopy demonstrated that 60% of transmigrating Tregs underwent transcellular migration through HSEC via ICAM-1- and VAP-1-rich transcellular pores in close association with CLEVER-1/stabilin-1. Thus, CLEVER-1/stabilin-1 and VAP-1 may provide an organ-specific signal for Treg recruitment to the inflamed liver and to hepatocellular carcinoma.  相似文献   

20.
We recently demonstrated that herpes simplex virus type 1 (HSV 1) induces a receptor on human umbilical vein endothelial cells for complement component C3b (C3bR). We assigned this receptor function to HSV 1 viral glycoprotein C (gC) based on several observations: tunicamycin, which prevents glycosylation and expression of N-linked glycoproteins on the surface of infected cells, markedly reduced expression of the C3bR; monoclonal antibodies to HSV 1 gC blocked detection of the C3bR, whereas monoclonal antibodies to other HSV 1 glycoproteins (gB, gD, gE) had no effect; and the MP mutant of HSV 1, which fails to express gC, did not induce C3bR. We now report that HSV 1 induces C3bR on a wide variety of cell types including bovine thoracic aorta and pulmonary artery endothelial cells, human embryonic lung and embryonic foreskin fibroblasts, and human embryonic kidney cells. To date, all cells studied that are permissive to HSV 1 express C3bR, although the pattern of rosetting of C3b-coated erythrocytes varies among the cell strains examined. We also demonstrate that C3bR expression is not a general response of human umbilical vein endothelial cells to injury, because three other viruses (adenovirus 7, measles, and mumps) do not induce C3bR after infection of these cells. Previously we had shown that among herpes simplex viruses, a variety of HSV 1 strains induce C3bR, whereas HSV 2 strains do not. We now demonstrate that other herpes family viruses (CMV and VZV) do not express C3bR. Therefore, C3bR expression appears to be unique for HSV 1 and occurs on a wide variety of cells permissive to this virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号