首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the study was to develop a framework for the accurate identification of joint centers to be used for the calculation of human body kinematics and kinetics. The present work introduces a method for the functional identification of joint centers using markerless motion capture (MMC). The MMC system used 8 color VGA cameras. An automatic segmentation-registration algorithm was developed to identify the optimal joint center in a least-square sense. The method was applied to the hip joint center with a validation study conducted in a virtual environment. The results had an accuracy (6mm mean absolute error) below the current MMC system resolution (1cm voxel resolution). Direct experimental comparison with marker-based methods was carried out showing mean absolute deviations over the three anatomical directions of 11.9 and 15.3mm if compared with either a full leg or only thigh markers protocol, respectively. Those experimental results were presented only in terms of deviations between the two systems (marker-based and markerless) as no real gold standard was available. The methods presented in this paper provide an important enabling step towards the biomechanical and clinical applications of markerless motion capture.  相似文献   

2.

Background and Purpose

Although the relevance of understanding spinal kinematics during functional activities in patients with complex spinal deformities is undisputed among researchers and clinicians, evidence using skin marker-based motion capture systems is still limited to a handful of studies, mostly conducted on healthy subjects and using non-validated marker configurations. The current study therefore aimed to explore the validity of a previously developed enhanced trunk marker set for the static measurement of spinal curvature angles in patients with main thoracic adolescent idiopathic scoliosis. In addition, the impact of inaccurate marker placement on curvature angle calculation was investigated.

Methods

Ten patients (Cobb angle: 44.4±17.7 degrees) were equipped with radio-opaque markers on selected spinous processes and underwent a standard biplanar radiographic examination. Subsequently, radio-opaque markers were replaced with retro-reflective markers and the patients were measured statically using a Vicon motion capture system. Thoracolumbar / lumbar and thoracic curvature angles in the sagittal and frontal planes were calculated based on the centers of area of the vertebral bodies and radio-opaque markers as well as the three-dimensional position of the retro-reflective markers. To investigate curvature angle estimation accuracy, linear regression analyses among the respective parameters were used. The impact of inaccurate marker placement was explored using linear regression analyses among the radio-opaque marker- and spinous process-derived curvature angles.

Results and Discussion

The results demonstrate that curvatures angles in the sagittal plane can be measured with reasonable accuracy, whereas in the frontal plane, angles were systematically underestimated, mainly due to the positional and structural deformities of the scoliotic vertebrae. Inaccuracy of marker placement had a greater impact on thoracolumbar / lumbar than thoracic curvature angles. It is suggested that spinal curvature measurements are included in marker-based clinical gait analysis protocols in order to enable a deeper understanding of the biomechanical behavior of the healthy and pathological spine in dynamic situations as well as to comprehensively evaluate treatment effects.  相似文献   

3.
While several different methods have been used to measure carpal kinematics, biplanar radiography is generally considered to be the most accurate and popular one. However, biplanar radiography is tedious and so only pseudo-dynamic kinematics can be measured. Recently, magnetic tracking system has been developed for the measurement of joint kinematics which is versatile and easy to use and so the possibility of measuring motions dynamically. In this study, the capability of a magnetic tracking device to accurately measure carpal kinematics was investigated by comparing it with biplanar radiography. The kinematics of the third metacarpal, scaphoid, and lunate in five fresh cadaveric specimens were measured using both methods as the wrists were placed in eight positions. The finite screw rotation of each bone with respect to the distal radius during selecting the seven wrist motions was calculated for both measuring techniques and compared. In general, the kinematics for all three bones measured by using either magnetic tracking device or biplanar radiography was identical and showed no statistical difference. The averaged differences ranged from 0.0 to 2.0°. These differences were due to the potential effect of the weight of the sensors and the interference of the attaching rod to the surrounding tissue. It is concluded that the application of the magnetic tracking device to carpal kinematics is warranted, if proper technical procedures as suggested are followed.  相似文献   

4.
Despite recent attention in the literature, anterior cruciate ligament (ACL) injury mechanisms are controversial and incidence rates remain high. One explanation is limited data on in vivo ACL strain during high-risk, dynamic movements. The objective of this study was to quantify ACL strain during jump landing. Marker-based motion analysis techniques were integrated with fluoroscopic and magnetic resonance (MR) imaging techniques to measure dynamic ACL strain non-invasively. First, eight subjects' knees were imaged using MR. From these images, the cortical bone and ACL attachment sites of the tibia and femur were outlined to create 3D models. Subjects underwent motion analysis while jump landing using reflective markers placed directly on the skin around the knee. Next, biplanar fluoroscopic images were taken with the markers in place so that the relative positions of each marker to the underlying bone could be quantified. Numerical optimization allowed jumping kinematics to be superimposed on the knee model, thus reproducing the dynamic in vivo joint motion. ACL length, knee flexion, and ground reaction force were measured. During jump landing, average ACL strain peaked 55±14 ms (mean and 95% confidence interval) prior to ground impact, when knee flexion angles were lowest. The peak ACL strain, measured relative to its length during MR imaging, was 12±7%. The observed trends were consistent with previously described neuromuscular patterns. Unrestricted by field of view or low sampling rate, this novel approach provides a means to measure kinematic patterns that elevate ACL strains and that provide new insights into ACL injury mechanisms.  相似文献   

5.
Markerless motion capture systems have developed in an effort to evaluate human movement in a natural setting. However, the accuracy and reliability of these systems remain understudied. Therefore, the goals of this study were to quantify the accuracy and repeatability of joint angles using a single camera markerless motion capture system and to compare the markerless system performance with that of a marker-based system. A jig was placed in multiple static postures with marker trajectories collected using a ten camera motion analysis system. Depth and color image data were simultaneously collected from a single Microsoft Kinect camera, which was subsequently used to calculate virtual marker trajectories. A digital inclinometer provided a measure of ground-truth for sagittal and frontal plane joint angles. Joint angles were calculated with marker data from both motion capture systems using successive body-fixed rotations. The sagittal and frontal plane joint angles calculated from the marker-based and markerless system agreed with inclinometer measurements by <0.5°. The systems agreed with each other by <0.5° for sagittal and frontal plane joint angles and <2° for transverse plane rotation. Both systems showed a coefficient of reliability <0.5° for all angles. These results illustrate the feasibility of a single camera markerless motion capture system to accurately measure lower extremity kinematics and provide a first step in using this technology to discern clinically relevant differences in the joint kinematics of patient populations.  相似文献   

6.
Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone.  相似文献   

7.
Measuring the motion of the scapula and humerus with sub-millimeter levels of accuracy in six-degrees-of-freedom (6-DOF) is a challenging problem. The current methods to measure shoulder joint motion via the skin do not produce clinically significant levels of accuracy. Thus, the purpose of this study was to validate a non-invasive markerless dual fluoroscopic imaging system (DFIS) model-based tracking technique for measuring dynamic in-vivo shoulder kinematics. Our DFIS tracks the positions of bones based on their projected silhouettes to contours on recorded pairs of fluoroscopic images. For this study, we compared markerlessly tracking the bones of the scapula and humerus to track them with implanted titanium spheres using a radiostereometric analysis (RSA) while manually manipulating a cadaver specimen's arms. Additionally, we report the repeatability of the DFIS to track the scapula and humerus during dynamic shoulder motion. The difference between the markerless model-based tracking technique and the RSA was ±0.3 mm in translation and ±0.5° in rotation. Furthermore, the repeatability of the markerless DFIS model-based tracking technique for the scapula and humerus was ±0.2 mm and ±0.4°, respectively. The model-based tracking technique achieves an accuracy that is similar to an invasive RSA tracking technique and is highly suited for non-invasively studying the in-vivo motion of the shoulder. This technique could be used to investigate the scapular and humeral biomechanics in both healthy individuals and in patients with various pathologies under a variety of dynamic shoulder motions encountered during the activities of daily living.  相似文献   

8.
Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.  相似文献   

9.
Recent studies have shown that model-based RSA using implant surface models to detect in vivo migration is as accurate as the classical marker-based RSA method. Use of bone surface models would be a further advancement of the model-based method by decreasing complications arising from marker insertion. The aim of this pilot investigation was to assess the feasibility of a "completely markerless" model-based RSA in detecting migration of an implant using bone surface models instead of bone markers. A total knee arthroplasty (TKA) was performed on a human cadaver knee, which was subsequently investigated by repeated RSA measurements performed by one observer. The cadaver knee was CT scanned prior to implantation of the TKA. Tibia-fibular surface models were created using two different commercially available software packages to investigate the effect of segmentation software on the accuracy of repeated migration measures of zero displacement by one observer. Reverse engineered surface models of the TKA tibial component were created. The analysis of the RSA images was repeated 10 times by one individual observer. For the markerless method, the greatest apparent migration observed about the three anatomical axes investigated was between -2.08 and 1.35 mm (SD ≤ 0.88) for z-axis translation, and -4.57° to 7.86° (SD ≤ 3.17) for R(y)-axis rotation, which were well beyond out of the range of what is typically considered adequate for clinically relevant RSA measurements. Use of tibia-fibular surface models of the bone instead of markers could provide practical advantages in evaluating implant migration. However, we found the accuracy and precision of the markerless approach to be lower than that of marker-based RSA, to a degree which precludes the use of this method for measuring implant migration in its present form.  相似文献   

10.
Coltman DW 《Molecular ecology》2005,14(8):2593-2599
Marker-based estimates of heritability are an attractive alternative to pedigree-based methods for estimating quantitative genetic parameters in field studies where it is difficult or impossible to determine relationships and pedigrees. Here I test the ability of the marker-based method to estimate heritability of a suite of traits in a wild population of bighorn sheep (Ovis canadensis) using marker data from 32 microsatellite loci. I compared marker-based estimates with estimates obtained using a pedigree and the animal model. Marker-based estimates of heritability were imprecise and downwardly biased. The high degree of uncertainty in marker-based estimates suggests that the method may be sufficient to detect the presence of genetic variance for highly heritable traits, but not sufficiently reliable to estimate genetic parameters.  相似文献   

11.
Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 με on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 με/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.  相似文献   

12.
A three-dimensional (3D) reconstruction algorithm based on contours identification from biplanar radiographs is presented. It requires, as technical prerequisites, a method to calibrate the biplanar radiographic environment and a surface generic object (anatomic atlas model) representing the structure to be reconstructed. The reconstruction steps consist of: the definition of anatomical regions, the identification of 2D contours associated to these regions, the calculation of 3D contours and projection onto the radiographs, the associations between points of the X-rays contours and points of the projected 3D contours, the optimization of the initial solution and the optimized object deformation to minimize the distance between X-rays contours and projected 3D contours. The evaluation was performed on 8 distal femurs comparing the 3D models obtained to CT-scan reconstructions. Mean error for each distal femur was 1 mm.  相似文献   

13.
Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.  相似文献   

14.
The capitate is often considered the "keystone" of the carpus, not simply because of its central and prominent position in the wrist, but also because of its mechanical interactions with neighboring bones. The purpose of this study was to determine in vivo three-dimensional capitate kinematics. Twenty uninjured wrists were investigated using a recently developed, non-invasive markerless bone registration (MBR) technique. Surface contours of the capitate, third metacarpal and radius were extracted from computed tomography images of seven wrist positions and the three-dimensional motions of the capitate and third metacarpal were calculated with respect to the radius in wrist flexion-extension and radio-ulnar deviation. We found that in vivo capitate motion does not simply occur about a single pivot point like a universal joint, as demonstrated by non-intersecting rotation axes for different capitate motions. The distance between flexion and ulnar deviation axes was 3.9+/-2.0 mm, and the distance between extension and ulnar deviation axes was 3.9+/-1.4 mm. Furthermore, capitate axes for males tended to be located more distally than axes for females. However, we believe that this result is related to subject size and not to gender. We also found that there is minimal relative motion between the capitate and third metacarpal during these in vivo wrist motions. These findings demonstrate the complexity of capitate kinematics, as well as the different mechanisms through which wrist flexion, extension, radial deviation and ulnar deviation occur.  相似文献   

15.
Understanding in vivo joint mechanics during dynamic activity is crucial for revealing mechanisms of injury and disease development. To this end, laboratories have utilized computed tomography (CT) to create 3-dimensional (3D) models of bone, which are then registered to high-speed biplanar radiographic data captured during movement in order to measure in vivo joint kinematics. In the present study, we describe a system for measuring dynamic joint mechanics using 3D surface models of the joint created from magnetic resonance imaging (MRI) registered to high-speed biplanar radiographs using a novel automatic registration algorithm. The use of MRI allows for modeling of both bony and soft tissue structures. Specifically, the attachment site footprints of the anterior cruciate ligament (ACL) on the femur and tibia can be modeled, allowing for measurement of dynamic ACL deformation. In the present study, we demonstrate the precision of this system by tracking the motion of a cadaveric porcine knee joint. We then utilize this system to quantify in vivo ACL deformation during gait in four healthy volunteers.  相似文献   

16.
Registration markers affixed to rigid bodies (fixed to bone as opposed to skin) are commonly used when tracking 3D rigid body motion. The measured positions of registration markers are subject to unavoidable errors, both systematic and non-systematic. Prior studies have investigated the error propagated to such derived properties as rigid body positions and helical axes, while others have focused on the error associated with a specific position tracking system under restricted conditions. Theoretical and simulation-based error propagation requires knowledge of the variation due to individual registration markers; however, the variation in registration marker position measurement has previously been either assumed or determined from static cases. The objective of this paper is the introduction of a method for determining individual marker variation irrespective of change in rigid body position or motion by utilizing the distances between the markers (edge lengths), which are invariant under rotation and translation. Simulations were used to validate and characterize the introduced technique, demonstrating that the predictions improve with greater edge length and additional markers, converge on reference values where the edge length is at least 4 times the magnitude of the maximum vertex variation, and that under ideal conditions the confidence interval about the predicted variation is within 7% of the maximum variation associated with that marker set. The introduced technique was tested on the results of a motion tracking experiment to demonstrate the wide disparity in vertex variation between static and non-static measurements of the same registration markers, where the non-static variation exceeded the static variation by an average factor of 12.7.  相似文献   

17.
Motion of the wrist bones is complicated and difficult to measure. Noninvasive measurement of carpal kinematics using medical images has become popular This technique is difficult and most investigators employ custom software. The objective of this paper is to describe a validated methodology for measuring carpal kinematics from computed tomography (CT) scans using commercial software. Four cadaveric wrists were CT imaged in neutral, full flexion, and full extension. A registration block was attached to the distal radius and used to align the data sets from each position. From the CT data, triangulated surface models of the radius, lunate, and capitate bones were generated using commercial software. The surface models from each wrist position were read into engineering design software that was used to calculate the centroid (position) and principal mass moments of inertia (orientation) of (1) the capitate and lunate relative to the fixed radius and (2) the capitate relative to the lunate. These data were used to calculate the helical axis kinematics for the motions from neutral to extension and neutral to flexion. The kinematics were plotted in three dimensions using a data visualization software package. The accuracy of the method was quantified in a separate set of experiments in which an isolated capitate bone was subjected to two different known rotation/translation motions for ten trials each. For comparison to in vivo techniques, the error in distal radius surface matching was determined using the block technique as a gold standard. The motion that the lunate and capitate underwent was half that of the overall wrist flexion-extension range of motion. Individually, the capitate relative to the lunate and the lunate relative to the radius generally flexed or extended about 30 deg, while the entire wrist (capitate relative to radius) typically flexed or extended about 60 deg. Helical axis translations were small, ranging from 0.6 mm to 1.8 mm across all motions. The accuracy of the method was found to be within 1.4 mm and 0.5 deg (95% confidence intervals). The mean error in distal radius surface matching was 2.4 mm and 1.2 deg compared to the use of a registration block. Carpal kinematics measured using the described methodology were accurate, reproducible, and similar to findings of previous investigators. The use of commercially available software should broaden the access of researchers interested in measuring carpal kinematics using medical imaging.  相似文献   

18.
It has previously been shown that the articulation of the scaphotrapezio-trapezoidal (STT) joint can be modeled such that the trapezoid and trapezium are tightly linked and move together on a single path relative to the scaphoid during all directions of wrist motion. The simplicity of such a model is fascinating, but it leaves unanswered why two distinct carpal bones would have a mutually articulating surface if there were no motion between them, and how such a simplistic model of STT joint motion translates into the more complex global carpal motion. We performed an in vivo analysis of the trapezoids and trapeziums of 10 subjects (20 wrists) using a markerless bone registration technique. In particular, we analyzed the centroid spacing, centroid displacements, kinematics, and postures of the trapezoid and trapezium relative to the scaphoid. We found that, on a gross level, the in vivo STT motion was consistent with that reported in vitro. In addition, we found that the magnitude of trapezoid and trapezium motion was dependent upon the direction of wrist motion. However, we also found that when small rotations and displacements are considered there were small but statistically significant relative motions between the trapezoid and trapezium (0.4 mm in maximum flexion, 0.3 mm in radial deviation and at least 10 degrees in flexion extension and ulnar deviation) as well as slight off-path rotations. The results of this study indicate that the STT joint should be considered a mobile joint with motions more complex than previously appreciated.  相似文献   

19.
Biplane 2D-3D registration approaches have been used for measuring 3D, in vivo glenohumeral (GH) joint kinematics. Computed tomography (CT) has become the gold standard for reconstructing 3D bone models, as it provides high geometric accuracy and similar tissue contrast to video-radiography. Alternatively, magnetic resonance imaging (MRI) would not expose subjects to radiation and provides the ability to add cartilage and other soft tissues to the models. However, the accuracy of MRI-based 2D-3D registration for quantifying glenohumeral kinematics is unknown. We developed an automatic 2D-3D registration program that works with both CT- and MRI-based image volumes for quantifying joint motions. The purpose of this study was to use the proposed 2D-3D auto-registration algorithm to describe the humerus and scapula tracking accuracy of CT- and MRI-based registration relative to radiostereometric analysis (RSA) during dynamic biplanar video-radiography. The GH kinematic accuracy (RMS error) was 0.6–1.0 mm and 0.6–2.2° for the CT-based registration and 1.4–2.2 mm and 1.2–2.6° for MRI-based registration. Higher kinematic accuracy of CT-based registration was expected as MRI provides lower spatial resolution and bone contrast as compared to CT and suffers from spatial distortions. However, the MRI-based registration is within an acceptable accuracy for many clinical research questions.  相似文献   

20.
The purpose of this study was to compare passive to active testing on the kinematics of the elbow and forearm using a load-controlled testing apparatus that simulates muscle loading. Ten fresh-frozen upper extremities were tested. Active control was achieved by employing computer-controlled pneumatic actuators attached to the tendons of the brachialis, biceps, triceps, brachioradialis and pronator teres. Motion of the radius and ulna relative to the humerus was measured with an electromagnetic tracking system. Active elbow flexion produced more repeatable motion of the radius and ulna than when tested passively (p<0.05). The decrease in variability, as determined from the standard deviation of five successive trials in each specimen, was 76.5 and 58.0% for the varus-valgus and internal-external motions respectively (of the ulna relative to the humerus). The variability in flexion during simulated active forearm supination was 30.6% less than during passive testing. Thus under passive control, in the absence of stability provided by muscular loading across the joint, these uncontrolled motions produce increased variability amongst trials. The smooth and repeatable motions resulting from active control, that probably model more closely the physiologic state, appear to be beneficial in the evaluation of unconstrained kinematics of the intact elbow and forearm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号