首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here, we show that the budding yeast proteins Ndc80p, Nuf2p, Spc24p and Spc25p interact at the kinetochore. Consistently, Ndc80p, Nuf2p, Spc24p and Spc25p associate with centromere DNA in chromatin immunoprecipitation experiments, and SPC24 interacts genetically with MCM21 encoding a kinetochore component. Moreover, although conditional lethal spc24-2 and spc25-7 cells form a mitotic spindle, the kinetochores remain in the mother cell body and fail to segregate the chromosomes. Despite this defect in chromosome segregation, spc24-2 and spc25-7 cells do not arrest in metaphase in response to checkpoint control. Furthermore, spc24-2 cells showed a mitotic checkpoint defect when microtubules were depolymerized with nocodazole, indicating that Spc24p has a function in checkpoint control. Since Ndc80p, Nuf2p and Spc24p are conserved proteins, it is likely that similar complexes are part of the kinetochore in other organisms.  相似文献   

2.
We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.  相似文献   

3.
4.
Mps2 (monopolar spindle protein) is a coiled-coil protein found at the spindle pole body (SPB) and at the nuclear envelope that is required for insertion of the SPB into the nuclear envelope. We identified three proteins that interact with Mps2 in a two-hybrid screen: Bbp1, Ynl107w and Spc24. All three proteins contain coiled-coil motifs that appear to be required for their interaction with Mps2. In this work, we verified the Mps2-Spc24 interaction by co-immunoprecipitation in vivo and by the in vitro interaction of recombinant proteins. Previous two-hybrid screens with Spc24 as bait had identified Spc25 and Ndc80 as putative interacting partners, and we verified these interactions in vivo by purification of TAP-tagged derivatives of Spc24 and Ndc80. Finally, we found that spc24 thermosensitive mutants had a chromosome segregation defect, but no apparent defect in SPB duplication. These results are consistent with recently published data showing that Spc24, Spc25 and Ndc80 are peripheral kinetochore com-ponents required for chromosome segregation. The Mps2-Spc24 interaction may contribute to the localization of Spc24 and other kinetochore components to the inner plaque of the SPB.  相似文献   

5.
The genomic stability of all organisms depends on the precise partition of chromosomes to daughter cells. The spindle assembly checkpoint (SAC) senses unattached kinetochores and prevents premature entry to anaphase, thus ensuring that all chromosomes attach to opposite spindle poles (bi-orientation) during mitosis. MPS1 is an evolutionarily conserved protein kinase required for the SAC and chromosome bi-orientation. Yet, its primary cellular substrate has remained elusive. We show that fission yeast Mph1 (MPS1 homologue) phosphorylates the kinetochore protein Spc7 (KNL1/Blinkin homologue) at the MELT repeat sequences. This phosphorylation promotes the in vitro binding to the Bub1-Bub3 complex, which is required for kinetochore-based SAC activation (Mad1-Mad2-Mad3 localization) and chromosome alignment. Accordingly, a non-phosphorylatable spc7-12A mutation abolishes kinetochore targeting of Bub1-Bub3, whereas a phospho-mimetic spc7-12E mutation forces them to localize at kinetochores throughout the entire cell cycle, even in the absence of Mph1. Thus, MPS1/Mph1 kinase locating at the unattached kinetochores initially creates a mark, which is crucial for SAC activation and chromosome bi-orientation. This mechanism seems to be conserved in human cells.  相似文献   

6.
The spindle pole body (SPB) is the microtubule organizing center in Saccharomyces cerevisiae. An essential task of the SPB is to ensure assembly of the bipolar spindle, which requires a proper balancing of forces on the microtubules and chromosomes. The SPB component Spc110p connects the ends of the spindle microtubules to the core of the SPB. We previously reported the isolation of a mutant allele spc110-226 that causes broken spindles and SPB disintegration 30 min after spindle formation. By live cell imaging of mutant cells with green fluorescent protein (GFP)-Tub1p or Spc97p-GFP, we show that spc110-226 mutant cells have early defects in spindle assembly. Short spindles form but do not advance to the 1.5-microm stage and frequently collapse. Kinetochores are not arranged properly in the mutant cells. In 70% of the cells, no stable biorientation occurs and all kinetochores are associated with only one SPB. Examination of the SPB remnants by electron microscopy tomography and fluorescence microscopy revealed that the Spc110-226p/calmodulin complex is stripped off of the central plaque of the SPB and coalesces to from a nucleating structure in the nucleoplasm. The central plaque components Spc42p and Spc29p remain behind in the nuclear envelope. The delamination is likely due to a perturbed interaction between Spc42p and Spc110-226p as detected by fluorescence resonance energy transfer analysis. We suggest that the force exerted on the SPB by biorientation of the chromosomes pulls the Spc110-226p out of the SPB; removal of force exerted by coherence of the sister chromatids reduced fragmentation fourfold. Removal of the forces exerted by the cytoplasmic microtubules had no effect on fragmentation. Our results provide insights into the relative contributions of the kinetochore and cytoplasmic microtubules to the forces involved in formation of a bipolar spindle.  相似文献   

7.
Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central plaque. We created temperature- sensitive SPC110 mutations by combining PCR mutagenesis with a plasmid shuffle strategy. The temperature-sensitive allele spc110-220 differs from wild type at two sites. The cysteine 911 to arginine mutation resides in the calmodulin-binding site and alone confers a temperature- sensitive phenotype. Calmodulin overproduction suppresses the temperature sensitivity of spc110-220. Furthermore, calmodulin levels at the SPB decrease in the mutant cells at the restrictive temperature. Thus, calmodulin binding to Spc110-220p is defective at the nonpermissive temperature. Synchronized mutant cells incubated at the nonpermissive temperature arrest as large budded cells with a G2 content of DNA and suffer considerable lethality. Immunofluorescent staining demonstrates failure of nuclear DNA segregation and breakage of many spindles. Electron microscopy reveals an aberrant nuclear structure, the intranuclear microtubule organizer (IMO), that differs from a SPB but serves as a center of microtubule organization. The IMO appears during nascent SPB formation and disappears after SPB separation. The IMO contains both the 90-kD and the mutant 110-kD SPB components. Our results suggest that disruption of the calmodulin Spc110p interaction leads to the aberrant assembly of SPB components into the IMO, which in turn perturbs spindle formation.  相似文献   

8.
M Knop  G Pereira  S Geissler  K Grein    E Schiebel 《The EMBO journal》1997,16(7):1550-1564
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.  相似文献   

9.
10.
How kinetochores bind to microtubules and move on the mitotic spindle remain unanswered questions. Multiple systems have implicated the Ndc80/Hec1 (Ndc80) kinetochore complex in kinetochore-microtubule interaction and spindle checkpoint activity. In budding yeast, Ndc80 copurifies with three additional interacting proteins: Nuf2, Spc24, and Spc25. Although functional vertebrate homologs of Ndc80 and Nuf2 exist, extensive sequence similarity searches have not uncovered homologs of Spc24 and Spc25. We have purified the xNdc80 complex to homogeneity from Xenopus egg extracts and identified two novel interacting proteins. Although the sequences have greatly diverged, we have concluded that these are the functional homologs of the yeast Spc24 and Spc25 proteins based on limited sequence similarity, common coiled-coil domains, kinetochore localization, similar phenotypes, and copurification with xNdc80 and xNuf2. Using both RNAi and antibody injection experiments, we have extended previous characterization of the complex and found that Spc24 and Spc25 are required not only to establish, but also to maintain kinetochore-microtubule attachments and metaphase alignment. In addition, we show that Spc24 and Spc25 are required for chromosomal movement to the spindle poles in anaphase.  相似文献   

11.
We show here that Ask1p, Dad2p, Spc19p and Spc34p are subunits of the budding yeast Duo1p-Dam1p- Dad1p complex, which associate with kinetochores and localize along metaphase and anaphase spindles. Analysis of spc34-3 cells revealed three novel functions of the Duo1-Dam1p-Dad1p subunit Spc34p. First, SPC34 is required to establish biorientation of sister kinetochores. Secondly, SPC34 is essential to maintain biorientation. Thirdly, SPC34 is necessary to maintain an anaphase spindle independently of chromosome segregation. Moreover, we show that in spc34-3 cells, sister centromeres preferentially associate with the pre-existing, old spindle pole body (SPB). A similar preferential attachment of sister centromeres to the old SPB occurs in cells depleted of the cohesin Scc1p, a protein with a known role in facilitating biorientation. Thus, the two SPBs are not equally active in early S phase. We suggest that not only in spc34-3 and Deltascc1 cells but also in wild-type cells, sister centromeres bind after replication preferentially to microtubules organized by the old SPB. Monopolar attached sister centromeres are resolved to bipolar attachment in wild-type cells but persist in spc34-3 cells.  相似文献   

12.
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.  相似文献   

13.
The yeast protein Stu2 belongs to the XMAP215 family of conserved microtubule-binding proteins which regulate microtubule plus end dynamics. XMAP215-related proteins also bind to centrosomes and spindle pole bodies (SPBs) through proteins like the mammalian transforming acidic coiled coil protein TACC or the yeast Spc72. We show that yeast Spc72 has two distinct domains involved in microtubule organization. The essential 100 N-terminal amino acids of Spc72 interact directly with the gamma-tubulin complex, and an adjacent non-essential domain of Spc72 mediates binding to Stu2. Through these domains, Spc72 brings Stu2 and the gamma-tubulin complex together into a single complex. Manipulation of Spc72-Stu2 interaction at SPBs compromises the anchorage of astral microtubules at the SPB and surprisingly also influences the dynamics of microtubule plus ends. Permanently tethering Stu2 to SPBs by fusing it to a version of Spc72 that lacks the Stu2-binding site in part complements these defects in a manner which is dependent upon the microtubule-binding domain of Stu2. Thus, the SPB-associated Spc72-Stu2 complex plays a key role in regulating microtubule properties.  相似文献   

14.
We have purified a complex from Saccharomyces cerevisiae containing the spindle components Ndc80p, Nuf2p, Spc25p, and Spc24p. Temperature-sensitive mutants in NDC80, SPC25, and SPC24 show defects in chromosome segregation. In spc24-1 cells, green fluorescence protein (GFP)-labeled centromeres fail to split during spindle elongation, and in addition some centromeres may detach from the spindle. Chromatin immunoprecipitation assays show an association of all four components of the complex with the yeast centromere. Homologues of Ndc80p, Nuf2p, and Spc24p were found in Schizosaccharomyces pombe and GFP tagging showed they were located at the centromere. A human homologue of Nuf2p was identified in the expressed sequence tag database. Immunofluorescent staining with anti-human Nuf2p and with anti-HEC, the human homologue of Ndc80p, showed that both proteins are at the centromeres of mitotic HeLa cells. Thus the Ndc80p complex contains centromere-associated components conserved between yeasts and vertebrates.  相似文献   

15.
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore–microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.  相似文献   

16.

Background

Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain ∼70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.

Principal Findings

We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.

Conclusions/Significance

Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, SPC42 is an essential gene, which encodes one of the major components of the spindle pole body (SPB). We report on a mutation in the SPC42 gene (spc42-102) that results in a sporulation-specific defect. Mitotic growth of haploid and diploid spc42-102 strains is normal and both exhibit the same growth rates as the isogenic wild-type strains. Many diploid spc42-102/spc42-102 cells undergo normal meiotic nuclear divisions, producing four haploid nuclei. However, a significant fraction of meiotic spc42-102/spc42-102 cells contain two immature SPBs and aberrant nuclei that are not surrounded by a prospore membrane. Some 40% of the resultant asci contain only two spores, while wild-type diploid cells almost always produce four-spored asci. Segregation of auxotrophic markers that are tightly linked to the centromere reveals that two-spore asci formed from spc42-102/spc42-102 diploid cells exclusively contain nonsister haploid spores. Western analysis and measurements of the fluorescent signal from an Spc42p-GFP (green fluorescent protein) fusion reveal that the mutant strain fails to accumulate Spc42p at meiosis. Thus, our results suggest that insufficiency of Spc42p during meiosis results in a pair of immature nonsister SPBs that are not enclosed by prospore membrane.  相似文献   

18.
The kinetochore is assembled during mitotic and meiotic divisions within the centromeric region of chromosomes. It is composed of more than eighty different proteins. Spc105 (also designated as Spc7, KNL‐1 or Blinkin in different eukaryotes) is a comparatively large kinetochore protein, which can bind to the Mis12/MIND and Ndc80 complexes and to the spindle assembly checkpoint components Bub1 and BubR1. Our genetic characterization of Drosophila Spc105 shows that a truncated version lacking the rapidly evolving, repetitive central third still provides all essential functions. Moreover, in comparison with Cenp‐C that has previously been observed to extend from the inner to the outer kinetochore region, full‐length Spc105 is positioned further out and is not similarly extended along the spindle axis. Thus, our results indicate that Spc105 forms neither an extended link connecting inner Cenp‐A chromatin with outer kinetochore regions nor a scaffold constraining kinetochore subcomplexes and spindle assembly checkpoint components together into a geometrically rigid supercomplex. Spc105 seems to provide a platform within the outer kinetochore allowing independent assembly of various kinetochore components.  相似文献   

19.
Spc25 is a component of the Ndc80 complex which consists of Ndc80, Nuf2, Spc24, and Spc25. Previous work has shown that Spc25 is involved in regulation of kinetochore microtubule attachment and the spindle assembly checkpoint in mitosis. The roles of Spc25 in meiosis remain unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. The Spc25 mRNA level gradually increased from the GV to MI stage, but decreased by MII during mouse oocyte meiotic maturation. Immunofluorescent staining showed that Spc25 was restricted to the germinal vesicle, and associated with chromosomes during all stages after GVBD. Overexpression of Spc25 by mRNA injection resulted in oocyte meiotic arrest, chromosome misalignment and spindle disruption. Conversely, Spc25 RNAi by siRNA injection resulted in precocious polar body extrusion and caused severe chromosome misalignment and aberrant spindle formation. Our data suggest that Spc25 is required for chromosome alignment, spindle formation, and proper spindle checkpoint signaling during meiosis.  相似文献   

20.
The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110–221 allele, which encodes mutations in the amino terminus. The screen identified mutations in SPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98–63 allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, the spc97 alleles are synthetic lethal with spc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97 interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98–63 spc110–221 cells is caused by the failure of Spc98–63p to interact with Spc110–221p. In contrast, the lethal phenotype in spc97–62 spc110–221 cells can be attributed to a decreased interaction between Spc97–62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号