首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Endosteal bone surface cells were previously shown to be involved in the regulation of bone formation in humans. In this study, we have characterized the cells isolated from the endosteal bone surface in adult rats. Fragments of periosteum-free tibia were obtained from 4-, 6- and 9-month-old rats by collagenase digestion, and the phenotypic characteristics of the osteoblastic cells migrating from the endosteal bone surface were evaluated in culture. Endosteal bone surface cells present a strong alkaline phophatase (ALP) activity as shown by cytochemistry and measured biochemically. The cells synthesize high levels of osteocalcin as measured by radioimmunoassay. Osteocalcin production was increased after stimulation with 10 nM 1,25 dihydroxyvitamin D (1,25(OH)2 D) and the response to 1,25(OH)2 D was similar at all ages. Endosteal cells from young adult rats (4 months old) but not from older rats (6 and 9 months old) showed increased cAMP production in response to 10 nM parathyroid hormone (PTH), suggesting an agerelated decrease in the PTH-responsiveness of the bone surface cells. Immunocytochemistry using specific antibodies showed that preconfluent endosteal bone cells from adult rats expressed collagen and noncollagenous bone proteins in culture in the absence of inducers. The cells synthesized mostly type-I collagen which remained localized intracellularly. Type-III collagen was only expressed at low levels. The bone surface cells also expressed osteocalcin and bone sialoprotein, two markers of differentiated osteoblasts, as well as osteonectin. Endosteal cells plated at high density and cultured for 21 days with 50 μg/ml ascorbic acid and 10 mM β-glycerophosphate formed multiple calcified nodules, as evidenced by von Kossa staining. This study shows that cells isolated from the endosteal bone surface of adult rats express in vitro characteristics of differentiated osteoblasts. These cell cultures can be used to study the dysfunctions of endosteal bone cells in relation to disorders of bone formation in adult rats.  相似文献   

2.
Expression of specific differentiation markers was investigated by histochemistry, immunofluorescence, and biosynthetic studies in osteoblasts outgrown from chips derived from tibia diaphyses of 18-day-old chick embryos. The starting osteoblast population expressed type I collagen and alkaline phosphatase in addition to other bone and cartilage markers as the lipocalin Ch21; the extracellular matrix deposited by these cells was not stainable for cartilage proteoglycans, and mineralization was observed when the culture was maintained in the presence of ascorbic acid, calcium and beta-glycerophosphate. During culture, clones of cells presenting a polygonal chondrocyte morphology and surrounded by an Alcian-positive matrix appeared in the cell population. Type II collagen and type X collagen were synthesized in these areas of chondrogenesis. In addition, chondrocytes isolated from these cultures expressed Ch21 and alkaline phosphatase. Chondrocytes were generated also from homogeneous osteoblast populations derived from a single cloned cell. The coexistence of chondrocytes and osteoblasts was observed during amplification of primary clones as well as in subclones. The data show the existence, within embryonic bone, of cells capable in vitro of both osteogenic and chondrogenic differentiation.  相似文献   

3.
The activity of human osteoblast-like cells cultured in vitro is regulated by a number of factors, which include systemic hormones as well as agents that can be produced locally within bone. Several cytokines and growth factors have been demonstrated to be produced by osteoblasts themselves, and this includes granulocyte-macrophage colony-stimulating factor (GM-CSF). In this report we show that recombinant human GM-CSF (rhGM-CSF) modulates the activities of osteoblast-like cells derived from human trabecular bone in vitro. rhGM-CSF stimulated the proliferation of the cultured human osteoblast-like cells, but antagonised the induction by 1,25(OH)2D3 of osteocalcin synthesis and alkaline phosphatase activity, two characteristic products of osteoblasts. rhGM-CSF however, had no appreciable effect on the production of prostaglandin E2, or on the plasminogen activator activity associated with human osteoblast-like cells. These results are the first report of which we are aware of an apparently direct action of GM-CSF on cells of the osteoblast phenotype. These studies indicate that GM-CSF represents another haematological factor that can potentially exert regulatory actions on human osteoblast-like cells. GM-CSF may therefore be a potential paracrine/autocrine regulator of osteoblast activity.  相似文献   

4.
Tissue engineering using living cells is emerging as an alternative to tissue or organ transplantation. The adult mesenchymal stem cells can be differentiated into multilineage cells, such as adipocytes, chondrocytes, or osteoblasts when cultured with specific growth factors. In the present investigation, we have studied the effect of honeycomb collagen scaffolds for the adhesion, differentiation and proliferation of bone marrow-derived mesenchymal stem cells into osteoblasts. Mesenchymal stem cells were isolated from 6-week old albino rat femur bone marrow, and cultured in alpha-MEM medium without beta-glycerophosphate and dexamethasone. Honeycomb collagen discs were prepared from bovine dermal atelocollagen, cross-linked by UV-irradiation and sterilized by heat. The honeycomb discs were placed on the culture dishes before seeding the stem cells. The cells attached quickly to the honeycomb collagen scaffold, differentiated and proliferated into osteoblasts. The differentiated osteoblasts were characterized by morphological examination and alkaline phosphatase activity. The osteoblasts also synthesized calcium-deficient hydroxyapatite (pseudo-hydroxyapatite) crystals in the culture. The mineralization was confirmed by Von Kossa staining and the crystals were analyzed by X-ray diffraction. Light microscopy and DNA measurements showed that the differentiated osteoblasts multiplied into several layers on the honeycomb collagen scaffold. The results demonstrated that the honeycomb collagen sponge is an excellent scaffold for the differentiation and proliferation of mesenchymal stem cells into osteoblasts. The data further proved that honeycomb collagen is an effective substrate for tissue engineering applications, and is very useful in the advancing field of stem cell technology and cell-based therapy.  相似文献   

5.
A method is presented for isolating osteoblasts from newborn mouse calvaria without the use of digestive enzymes. The procedure is based on the ability of osteoblasts to migrate from bone onto small glass fragments (Jones, S.J., and A. Boyde, 1977, Cell Tissue Res., 184:179- 193). The isolated cells were cultured for up to 14 d in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 50 micrograms/ml of ascorbic acid. 7-d cultures were incubated for 24 h with [3H]proline. High levels of collagen synthesis relative to total protein were found, as measured by collagenase digestion of medium and cell layer proteins. Analysis of pepsin-digested proteins from the same cultures by SDS PAGE showed that type I collagen was predominantly produced with small amounts of type III and V (alpha 1 chains) collagens. Osteoblasts grown in the presence of beta-glycerophosphate were able to initiate mineral deposition in culture. Electron microscopic analysis of the cultures revealed the presence of needle- shaped apatite-like crystals associated with collagen fibrils and vesicles in the extracellular space. Mouse skin fibroblasts cultured under identical conditions failed to initiate mineralization. Electron histochemical studies revealed the presence of alkaline phosphatase activity, associated with osteoblast membranes, matrix vesicles and on or near collagen fibrils. Thus these isolated osteoblasts retained in culture their unique property of initiating mineralization and therefore represent a model of value for studying the mineralization process in vitro.  相似文献   

6.
7.
Characterization of osteocrin expression in human bone.   总被引:2,自引:0,他引:2  
Osteocrin (Ostn), a bone-active molecule, has been shown in animals to be highly expressed in cells of the osteoblast lineage. We have characterized this protein in human cultured primary human osteoblasts, in developing human neonatal bone, and in iliac crest bone biopsies from adult women. In vivo, Ostn expression was localized in developing human neonatal rib bone, with intense immunoreactivity in osteoblasts on bone-forming surfaces, in newly incorporated osteocytes, and in some late hypertrophic chondrocytes. In adult bone, Ostn expression was specifically localized to osteoblasts and young osteocytes at bone-forming sites. In vitro, Ostn expression decreased time dependently (p<0.02) in osteoblasts cultured for 2, 3, and 6 days. Expression was further decreased in cultures containing 200 nM hydrocortisone by 1.5-, 2.3-, and 3.1-fold (p<0.05) at the same time points. In contrast, alkaline phosphatase expression increased with osteoblast differentiation (p<0.05). Low-dose estradiol decreased Ostn expression time dependently (p<0.05), whereas Ostn expression in cultures treated with high-dose estradiol was not significantly changed. These results demonstrate that Ostn is expressed in human skeletal tissue, particularly in osteoblasts in developing bone and at sites of bone remodeling, suggesting a role in bone formation. Thus, Ostn provides a marker of osteoblast lineage cells and appears to correlate with osteoblast activity.  相似文献   

8.
Prolactin (PRL) enhanced bone remodeling leading to net bone loss in adult and net bone gain in young animals. Studies in PRL-exposed osteoblasts derived from adult humans revealed an increase in the expression ratio of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG), thus supporting the previous finding of PRL-induced bone loss in adults. This study thus investigated the effects of PRL on the osteoblast functions and the RANKL/OPG ratio in human fetal osteoblast (hFOB) cells which strongly expressed PRL receptors. After 48h incubation, PRL increased osteocalcin expression, but had no effect on cell proliferation. However, the alkaline phosphatase activity was decreased in a dose-response manner within 24h. The effect of PRL on alkaline phosphatase was abolished by LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor. PRL also decreased the RANKL/OPG ratio by downregulating RANKL and upregulating OPG expression, implicating a reduction in the osteoblast signal for osteoclastic bone resorption. It could be concluded that, unlike the osteoblasts derived from adult humans, PRL-exposed hFOB cells exhibited indices suggestive of bone gain, which could explain the in vivo findings in young rats. The signal transduction of PRL in osteoblasts involved the PI3K pathway.  相似文献   

9.
Weightlessness induces bone loss in humans and animal models. We employed the NASA-approved Rotating Wall Vessel bioreactor (RWV) to develop osteoblast-like cell cultures under microgravity and evaluate osteoblast phenotype and cell function. Rat osteoblast-like cell line (ROS.SMER#14) was grown in the RWV at a calculated gravity of 0.008g. For comparison, aliquots of cells were grown in conventional tissue culture dishes or in Non-Rotating Wall Vessels (N-RWV) maintained at unit gravity. In RWV, osteoblasts showed high levels of alkaline phosphatase expression and activity, and elevated expression of osteopontin, osteocalcin, and bone morphogenetic protein 4 (BMP-4). In contrast, the expression of osteonectin, bone sialoprotein II and BMP-2 were unaltered compared to cells in conventional culture conditions. These observations are consistent with a marked osteoblast phenotype. However, we observed that in RWV osteoblasts showed reduced proliferation. Furthermore, DNA nucleosome-size fragmentation was revealed both morphologically, by in situ staining with the Thymine-Adenine binding dye bis-benzimide, and electrophoretically, by DNA laddering. Surprisingly, no p53, nor bcl-2/bax, nor caspase 8 pathways were activated by microgravity, therefore the intracellular cascade leading to programmed cell death remains to be elucidated. Finally, consistent with an osteoclast-stimulating effect by microgravity, osteoblasts cultured in RWV showed upregulation of interleukin-6 (IL-6) mRNA, and IL-6 proved to be active at stimulating osteoclast formation and resorbing activity in vitro. We conclude that under microgravity, reduced osteoblast life span and enhanced IL-6 expression may result in inefficient osteoblast- and increased osteoclast-activity, respectively, thus potentially contributing to bone loss in individuals subjected to weightlessness.  相似文献   

10.
Objectives: Chitosan is widely used as a scaffold for bone tissue engineering. However, up‐to‐date, no previous detailed study has been conducted to elucidate any mechanism of osteogenesis by chitosan itself. Here, we have evaluated effects of chitosan‐coated tissue culture plates on adhesion and osteoblast differentiation processes of human mesenchymal stem cells (hMSCs), isolated from adult bone marrow. Materials and methods: Tissue culture plates coated with chitosan at different coating densities were used to evaluate the effects on hMSC adhesion and osteoblast differentiation. hMSCs were induced to differentiate into osteoblasts on the chitosan‐coated plates and were evaluated using established techniques: alkaline phosphatase assay, demonstration of presence of calcium and real time PCR. Results: The cells adhered to plates of lower coating density of chitosan, but formed viable cell aggregates at higher coating density (100 μg/sq.cm). Coating density of 25 μg/sq.cm, supporting cell adhesion was chosen for osteoblast differentiation experiments. Differentiating hMSCs showed higher mineral deposition and calcium content on chitosan‐coated plates. Chitosan upregulated genes associated with calcium binding and mineralization such as collagen type 1 alpha 1, integrin‐binding sialoprotein, osteopontin, osteonectin and osteocalcin, significantly. Conclusions: We demonstrate for the first time that chitosan enhanced mineralization by upregulating the associated genes. Thus, the study may help clinical situations promoting use of chitosan in bone mineralization, necessary for healing non‐union fractures and more.  相似文献   

11.
Osteoblasts from calvaria of 18-day-old fetal Sprague-Dawley rats were isolated using a dissecting procedure followed by collagenase digestion. Freshly isolated or previously frozen cells were cultured for up to 4 weeks in a Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 50 micrograms/ml ascorbic acid, with or without 10 mM beta-glycerophosphate. Most of the cells were alkaline phosphatase positive throughout the culture period and expressed a type-I collagen as assessed by immunofluorescence. Cells cultured in the presence of beta-glycerophosphate formed a matrix with type-I collagen in 7 days. The matrix underwent mineralization in less than 2 weeks. In the absence of beta-glycerophosphate, only the formation of a nonmineralized matrix was observed. Electron-microscopic examination revealed osteoblasts embedded in a dense network of collagen fibers, with a well-defined mineralization process in association with matrix vesicles. Scanning electron-microscopy showed that the matrix composed of layers of irregularly shaped spread cells with smooth surfaces trapped in a fiber matrix. No mineralization process was observed when rat skin fibroblasts were cultured under similar conditions. These data demonstrate the ability of enzymatically isolated osteoblasts cultured in the presence of beta-glycerophosphate to form bone in vitro, and that this process is similar to bone formation in vivo.  相似文献   

12.
The goal of this study is to characterize the epithelioid-like human marrow sac cells that separate the myeloid and osteoblast populations in situ and to determine if they express osteoblast cytoplasmic markers. Tubular segments of femoral diaphyseal bone were obtained from healthy young (4-8 yr) male and female patients undergoing femoral shortening surgeries. The interface between bone and marrow was examined by scanning (SEM) and transmission electron microscopy (TEM). The marrow sac cells were isolated and cultured in a-MEM medium with and without dexamethasone, glycerophosphate, and ascorbic acid [DGPA]. Alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2) and osteocalcin were evaluated. In the SEM, the marrow sac presented a distinctive pattern of large overlapping cells. TEM studies showed that marrow sac was one or two cells thick, which were attenuated with elongated nuclei, few cellular organelles, and appeared to display intercellular gap junctions. In culture, the marrow sac cells stained positively for ALP and BMP-2, and their expression was enhanced two- to three- fold when the cells were grown in DGPA. DGPA did not enhance osteocalcin expression. The cells of the human marrow sac reside proximate to endosteal osteoblasts and express osteoblastic markers. It is possible that these stromal cells constitute an osteoprogenitor pool from which replacement osteoblasts are recruited, and that they are involved in normal bone formation and in bone diseases (e.g., osteoporosis and osteopenia).  相似文献   

13.
《Phytomedicine》2014,21(12):1498-1503
Phytoestrogen-rich Pueraria mirifica (PM) tuberous extract is a promising candidate for the development of anti-osteoporosis drugs for postmenopausal women, but its action has never been validated in humans or in non-human primates, which are more closely related to humans than rodents. In vitro study of non-human primate osteoblasts is thus fundamental to prepare for in vivo studies of phytoestrogen effects on primate bone. This study aimed to establish a culture system of baboon primary osteoblasts and to investigate the effects of PM extract and its phytoestrogens on these cells. Primary osteoblasts from adult baboon fibulae exhibited osteoblast characteristics in regard to proliferation, differentiation, mineralization, and estrogen receptor expression. They responded to 17β-estradiol by increased proliferation rate and mRNA levels of alkaline phosphatase (ALP), type I collagen, and osteocalcin. After being exposed for 48 h to 100 μg/ml PM extract, 1000 nM genistein, or 1000 nM puerarin, primary baboon osteoblasts markedly increased the rate of proliferation and mRNA levels of ALP and type I collagen without changes in Runx2, osterix, or osteocalcin expression. PM extract, genistein, and puerarin also decreased the RANKL/OPG ratio, suggesting that they could decrease osteoclast-mediated bone resorption. However, neither PM extract nor its phytoestrogens altered calcium deposition in osteoblast culture. In conclusion, we have established baboon primary osteoblast culture, which is a new tool for bone research and drug discovery. Furthermore, the present results provide substantial support for the potential of PM extract and its phytoestrogens to be developed as therapeutic agents against bone fragility.  相似文献   

14.
15.
The process of mechanotransduction of bone, the conversion of a mechanical stimulus into a biochemical response, is known to occur in osteoblasts in response to fluid shear stress. In order to understand the reaction of osteoblasts to various times of flow perfusion, osteoblasts were seeded on three-dimensional scaffolds, and cultured in the following conditions: continuous flow perfusion, intermittent flow perfusion, and static condition. We collected samples on day 4, 8 and 12 for analysis. Osteoblast proliferation was demonstrated by cell proliferation and scanning electron microscopy assay. Additionally, the expression of known markers of differentiation, including alkaline phosphatase and osteocalcin, were tested by qRT-PCR and alkaline phosphatase activity assay, and the deposition of calcium was used as an indicator of mineralization demonstrated by calcium content assay. The results supported that low fluid shear stress plays an important role in the activation of osteoblasts: enhance cell proliferation, increase calcium deposition, and promote the expression of osteoblastic markers. Furthermore, the continuous flow perfusion is a more favorable environment for the initiation of osteoblast activity compared with intermittent flow perfusion. Therefore, the force and time of fluid shear stress are important parameters for osteoblast activation.  相似文献   

16.
In rat osteoblast-like cells, a time-dependent sequence of growth and differentiation-dependent genes has been identified and a model of osteoblast differentiation in culture suggested. We investigated the expression of the bone matrix-associated proteins osteonectin and procollagen I and of the bone cell phenotype-related proteins alkaline phosphatase and osteocalcin during cell culture in primary human osteoblast like cells. Primary human explant cultures from nine young healthy donors were established under highly standardized conditions. Cells in the second passage were analyzed on different days from day 1 to 32, comparing cells growing under the influence of ascorbate with controls. Gene expression was determined by Northern blot analysis or polymerase chain reaction. Osteocalcin expression was also investigated after 1,25-(OH)(2)D(3) stimulation. On the protein level, newly synthesized collagen I, alkaline phosphatase activity, and secretion of osteocalcin were analyzed at all time points. On comparing our findings to the pattern of gene expression suggested for the rat calvarial osteoblast system, we found a similar developmental sequence for the so-called "proliferation" as well as a similar, but lengthened, sequence for the "matrix maturation stage." During "matrix maturation," we found an ongoing proliferation despite increased alkaline phosphatase and decreased procollagen I gene expression. Our study, therefore, shows that in pHOB the gene expression profile proceeded to the "matrix maturation stage," as defined by Owen and colleagues, independent of ongoing proliferation. We were unable to observe the mineralization period as demonstrated by the missing increase of osteocalcin expression and lack of nodule formation in our human osteoblast model. In contrast to the rat system, we found a proliferation stimulating influence of ascorbate, suggesting species-specific differences in response to differentiation factors. From these data, we conclude that general considerations on physiology and pathophysiology of bone cell differentiation have to be confirmed in the human osteoblastic cell system.  相似文献   

17.
In a previous work, we demonstrated that the osteoprogenitors derived from the marrow stroma of the hypophysectomized (HX) rat demonstrate enhanced proliferative and differentiation capacities when placed in an optimal microenvironment. In this study, we sought to investigate the potential of the trabecular osteoblast-like cells of the HX rat. These cells represent a more mature pool of osteoblasts than the progenitors derived from the marrow stroma. We examined all three stages of osteoblast development using trabecular osteoblast-like cells derived from age-matched intact rats as a control. Using thymidine incorporation and cell number as indicators of proliferation, we found that these cells, like the osteoprogenitors derived from the HX rat, demonstrate augmented proliferation when placed in culture. Additionally, type I collagen expression remained at significant levels past the end stages of proliferation, at which point it is expected to be downregulated. Matrix maturation markers, such as alkaline phosphatase activity and bone sialoprotein expression, however, were significantly lower than in the controls. Mineralization potential, as measured by mineralized nodule formation, Ca(2+) content, and OPN and OCN expression, was also significantly reduced. Our results have uncovered an aberrant model of osteoblast development in which proliferation is deregulated, resulting in a minimal capacity of these cells to develop into fully differentiated mineralizing osteoblasts.  相似文献   

18.
The purpose of the present study was to investigate the effect of a collagen/β-tricalcium phosphate (COL/β-TCP) composite on osteoblast growth and proliferation. The COL/β-TCP composite was prepared by mixing COL type I with β-TCP, in 1:1 (w/w) ratio and conditioned as sponge by freeze-drying. The osteoblast culture was obtained from rat calvaria bones by enzymatic digestion and cells were seeded in the COL/β-TCP composite. The cell morphology and viability, alkaline phosphatase and osteocalcin, as markers of osteoblast proliferation were evaluated at 3, 7 and 25 days of culture. Histological sections revealed that cell colonization progressively increased inside the COL/β-TCP scaffold, and osteoblasts had a random distribution throughout the scaffold. Cells cultured into the COL/β-TCP scaffold presented osteoblast phenotype, intense staining of alkaline phosphatase and increased production of osteocalcin. Transmission electron micrographs revealed intimate contacts between osteoblasts and the scaffold. MTT test indicated that the viability of the cells cultivated in the presence of COL/β-TCP scaffold was similar to that of the control. All these results show that our COL/β-TCP composite act as a good substrate for rat osteoblast proliferation and migration and could be a promising substitute for bone repair.  相似文献   

19.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

20.
Oh JH  Zöller JE  Kübler A 《Cryobiology》2002,44(3):279-287
The aim of this study was to develop a new cryopreservation technique to maintain the osteoblast viability in frozen iliac bone and to prove cell viability using cell culture techniques.Human iliac cancellous bones were frozen with and without 10% Me(2)SO at -80 degrees C. The tubes were kept in a -80 degrees C freezer for at least 2 days. After the storage period, the frozen bone was thawed by placing the tube in a 37 degrees C water bath. A serial enzymatic digestion technique using 0.2% collagenase was employed to isolate osteoblast-like cells from the bone. The cells that were released were inoculated into tissue culture flasks containing DMEM supplemented with 10% FCS. They were incubated at 37 degrees C in a humidified atmosphere of 95% air and 5% CO(2). Cells of the second passage were plated at a density of 5 x 10(3)cells/cm(2) in a 24-well plate and used for characterization. For characterization, WST-1 assay, determination of alkaline phosphatase, Type I collagen assay, osteocalcin assay, and von Kossa staining were used. The assays were performed at 3, 6, 9, and 12 days after plating the cells. Based on the results of this study, we conclude that the osteoblast-like cells in the frozen bone can survive, only when the bone is frozen with cryoprotectants to prevent injury during freezing and thawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号