首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the influence of calcium (Ca) and aluminum (Al) nutrition on the foliar physiology of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] in northern New England, USA. At the Hubbard Brook Experimental Forest (NH, USA), spruce and fir saplings were sampled from control, Al-, and Ca-supplemented plots at a long-established nutrient perturbation (NuPert) study in fall 2008. Measurements included cation concentrations (roots and foliage), dark-adapted chlorophyll fluorescence (F v/F m), soluble sugar concentrations, and ascorbate peroxidase (APX) and glutathione reductase (GR) activity in current-year foliage. Additional untreated saplings were sampled from base-rich Sleepers River (VT) and base-poor Jeffers Brook (NH) for F v/F m and foliar nutrient concentrations. At NuPert, there were significantly greater Ca concentrations and Ca:Al ratios in roots from the Ca end vs. the Al end of the Al-control-Ca addition gradient. There were also trends toward greater foliar Ca and Ca:Al ratios and lower Al concentrations across the treatment gradient at NuPert and for foliage at Sleepers River vs. Jeffers Brook. At NuPert, F v/F m and APX activity increased across the treatment gradient, and red spruce was higher in these measures than balsam fir. These patterns were also observed when Jeffers Brook and Sleepers River were compared. Increased Ca availability appeared to enhance the ability of red spruce and balsam fir to repair oxidative stress damage, including photooxidation. Our findings support work indicating a greater contemporary level of stress for balsam fir relative to red spruce, which is surprising considering the well-documented regional decline of spruce.  相似文献   

2.
Data are presented for what we believe to be the first assessment of the elemental foliar status of red spruce (Picea rubens Sarg.) and Fraser fir [Abies fraseri (Pursh.) Poir.] trees in the high elevation forests of the southern Appalachian mountans. Needle samples were collected from September–November 1984. Needles were separated according to flush year for the 1984, 1983 and 1982 growing seasons. Each sample was analyzed without washing for 28 macro- and micronutrients and trace elements. Significant differences in foliar concentrations were observed between flush year for N, P, Ca, Mg, K, Cl, Cu, Ce, Th, Cs, Pb, Fe, La and Rb for Fraser fir (n=41), and P, Ca, K, Cl, Cu, Pb and Rb for red spruce (n=30). Nitrogen concentrations ranged from 11.2–20.2 mg g?1 for Fraser fir, and 8.7–15.9 mg g?1 for red pruce. The mean concentration of Ca observed in red spruce needles (1.4 mg g?1 1984 growing season) fell at the low extreme of reported values for non-necrotic red spruce foliage in the northeastern United States (1.2–11.6 mg g?1). The mean concentration of Ca in Fraser fir foliage (3.4 mg g?1, 1984 growing season) was also lower than reported values for eastern fir, but not to the extent demonstrated for red spruce. Fraser fir needles had higher concentrations of Al than red spruce (310vs 91 mg kg?1, respectively, 1984 growing season), but both values are higher than those reported for spruce or fir from the northeastern United States. Calcium:aluminum ratios in current foliage are the lowest yet reported for the eastern spruce/fir forest type, suggesting that Al toxicity and/or Ca deficiency may be important stresses in these stands. Comparison of Pb concentrations with those of other rare-earth elements known to be associated with dust on needle surfaces (Ce, La, Sc, Sm, and Th) suggested that a substantial portion of the Pb found was due to particulates on the needle surfaces. The significance of these results to the observed forest decline syndrome in high elevation forests of the eastern United States is also discussed.  相似文献   

3.
Pueppke  S. G. 《Plant and Soil》1988,109(2):189-193
Current and one-year-old foliage was collected from sixty-five red spruce trees growing in thirteen stands at different elevations in the Green Mountains of Vermont and Adirondacks of New York. Sample trees were randomly selected from visually healthy trees at each site. Foliage was analyzed for major and minor elements. In July 1984, foliar Ca, Mg, and Zn concentrations were significantly greater at low than at high elevations. In October 1984, Ca, Mg, and Zn concentrations were higher at low elevations and Ca and Mg concentrations varied significantly among locations within elevational groups. Nitrogen concentration was significantly higher in the high-elevation group in July but not in October. The average red spruce foliar Mg concentration at the end of the growing season in the high elevation stands (442 mg kg−1) is much lower than values reported for other mature red spruce stands in the eastern United States.  相似文献   

4.
Monthly foliage samples were evaluated for elemental composition from red spruce and balsam fir trees in a commercial, low elevation spruce-fir stand at Howland, Maine during the 1987 growing season. Balsam fir showed consistently higher concentrations in A1 and to a lesser extent N, Ca, Mg, and Fe when compared to red spruce. Red spruce exhibited consistently higher Mn and K concentrations. Both species showed a marked seasonal trend in the foliar concentrations of N, P, K, and Ca in current year foliage. For N, P, and K current year foliar concentrations declined rapidly during the early part of the growing season. Calcium concentrations steadily increased during the growing season for both species and age class of needles. Foliar concentrations of N and P in both species suggests that the availability of these nutrients is limited for this site.  相似文献   

5.
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll a concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.  相似文献   

6.
This paper describes a new, simple, quantitative technique for evaluating the relative usefulness of plants to people. The technique is then compared to the quantitative approaches in ethnobotany that have been developed recently. Our technique is used to calculate the importance of over 600 species of woody plants to non-indigenous mestizo people in Tambopata, Amazonian Peru. Two general classes of hypotheses are formulated and tested statistically, concerning (1) the relative importance of different species, and (2) the importance of different families. The plant families are compared with respect to all uses, and with respect to five broad groups of uses. Palms, Annonaceae, and Lauraceae were found to be the most useful woody plant families. On average, the 20 largest woody plant families are most important to mestizos for subsistence construction materials, followed in descending order by commercial, edible, technological, and medicinal uses.  相似文献   

7.
Most previous studies have ascribed variations in the resorption of a certain plant nutrient to its corresponding environmental availability or level in tissues, regardless of the other nutrients’ status. However, given that plant growth relies on both sufficient and balanced nutrient supply, the nutrient resorption process should not only be related to the absolute nutrient status, but also be regulated by the relative limitation of the nutrient. Here, based on a global woody-plants dataset from literature, we test the hypothesis that plants resorb proportionately more nitrogen (or phosphorus) when they are nitrogen (or phosphorus) limited, or similar proportions of nitrogen (N) and phosphorus (P) when co-limited by both nutrients (the relative resorption hypothesis). Using the N:P ratio in green foliage as an indicator of nutrient limitation, we found an inverse relationship between the difference in the proportionate resorption of N vs P and this foliar N:P ratio, consistent across species, growth-forms, and vegetation-types globally. Moreover, according to the relative resorption hypothesis, communities with higher/lower foliar N:P (more likely P/N limited) tend to produce litter with disproportionately higher/lower N:P, causing a worsening status of P/N availability; this positive feedback may somehow be counteracted by several negative-feedback mechanisms. Compared to N, P generally shows higher variability in resorption efficiency (proportion resorbed), and higher resorption sensitivity to nutrient availability, implying that the resorption of P seems more important for plant nutrient conservation and N:P stoichiometry. Our findings elucidate the nutrient limitation effects on resorption efficiency in woody plants at the global scale, and thus can improve the understanding of nutrient resorption process in plants. This study also suggests the importance of the foliar N:P ratio as a key parameter for biogeochemical modeling, and the relative resorption hypothesis used to deduce the critical (optimal) N:P ratio for a specific plant community.  相似文献   

8.
Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.  相似文献   

9.
10.
The aim of the research was to evaluate the effect of foliar application of different doses of Tytanit as a biostimulant on the yield and nutritional value of Medicago × varia T. Martin and Trifolium pratense L. It was assumed that titanium application during any life cycle of alfalfa hybrid and red clover would contribute to their growth, digestibility, and total protein content. In addition, it was expected that increasing doses of Tytanit up to 0.6 dm3 ha−1 would improve the yield and quality of forage plants. Different doses of Tytanit in different ways affected the yield. However, the largest dose of 0.6 dm3 turned out to be the most effective. It contributed to a 38% increase in the yield of hybrid alfalfa and to a 31% increase in the red clover yield. Individual doses of Tytanit in different ways affected accumulation of protein and crude fibre in the dry matter. Used at 0.4 and 0.6 dm3 doses it increased the amounts of protein and crude fibre relative to control. The smallest dose had no significant effect on these parameters. Tytanit did not improve dry matter digestibility, and there was no statistically significant variation as a result of its application. Foliar application of the biostimulant resulted in an increase in the concentration of phosphorus, potassium, and magnesium in plant dry matter. High content of calcium in the plant species before Tytanit application increased further as a response to 0.2 and 0.4 dm3 doses, with a slight increase in the ratio of K: (Ca + Mg) and an excessive growth of the Ca: P ratio, which reduced hybrid alfalfa and red clover nutritional values. Thus, Tytanit doses used in the experiment significantly increased hybrid alfalfa and red clover yields, but the nutritional value of the plants did not improve.  相似文献   

11.
Mitochondrial Ca2+ (mCa2+) handling is an important regulator of liver cell function that controls events ranging from cellular respiration and signal transduction to apoptosis. Cytosolic Ca2+ enters mitochondria through the ruthenium red-sensitive mCa2+ uniporter, but the mechanisms governing uniporter activity are unknown. Activation of many Ca2+ channels in the cell membrane requires PLC. This activation commonly occurs through phosphitidylinositol-4,5-biphosphate (PIP2) hydrolysis and the production of the second messengers inositol 1,4,5-trisphosphate [I(1,4,5)P3] and 1,2-diacylglycerol (DAG). PIP2 was recently identified in mitochondria. We hypothesized that PLC exists in liver mitochondria and regulates mCa2+ uptake through the uniporter. Western blot analysis with anti-PLC antibodies demonstrated the presence of PLC-delta1 in pure preparations of mitochondrial membranes isolated from rat liver. In addition, the selective PLC inhibitor U-73122 dose-dependently blocked mCa2+ uptake when whole mitochondria were incubated at 37 degrees C with 45Ca2+. Increasing extra mCa2+ concentration significantly stimulated mCa2+ uptake, and U-73122 inhibited this effect. Spermine, a uniporter agonist, significantly increased mCa2+ uptake, whereas U-73122 dose-dependently blocked this effect. The inactive analog of U-73122, U-73343, did not affect mCa2+ uptake in any experimental condition. Membrane-permeable I(1,4,5)P3 receptor antagonists 2-aminoethoxydiphenylborate and xestospongin C also inhibited mCa2+ uptake. Although extra mitochondrial I(1,4,5)P3 had no effect on mCa2+ uptake, membrane-permeable DAG analogs 1-oleoyl-2-acetyl-sn-glycerol and DAG-lactone, which inhibit PLC activity, dose-dependently inhibited mCa2+ uptake. These data indicate that PLC-delta1 exists in liver mitochondria and is involved in regulating mCa2+ uptake through the uniporter.  相似文献   

12.
Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient ‘non-polypod’ fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf’s lifetime transpiration may play a significant role in determining plant nutrition.  相似文献   

13.
Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called “ColourQuant,” we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.

Quantitative analysis of color patterning in a large coleus breeding population reveals color features that are associated with aesthetic value.  相似文献   

14.
Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower ‘Verona’ and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of each macronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg-1 in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg-1 in the inflorescence tissues, respectively.  相似文献   

15.
This study addressed distribution of calcium and strontium in Siberian spruce (Picea obovata Ledeb.) and Siberian fir (Abies sibirica Ledeb.) tree-rings and its dependence on these woody species cell structure. Calcium concentration was found to decrease gradually from earlywood to latewood, whereas strontium showed an opposite trend. However, their trends at the scale of several rings are co-directed in the samples analyzed. A strong linear relationship was identified between the distribution of Sr/Ca concentration ratio and tree-ring density profile for both woody species. Radiographic density of Siberian spruce tree-ring cell walls and Ca and Sr concentrations in them were determined to have negative correlation with cell wall thickness. In earlywood of annual rings of a spruce the radiographic density of cell wall reaches 2.0 g/cm3 and decreases to 1.2 g/cm3 in latewood. The hypothesis put forward in this study to explain these strontium and calcium distributions in the tree-rings is that the concentrations of the element ions change with development of different cell wall layers. The high value of radiographic density of a cellular wall in earlywood and its relationship with cell wall thickness can be explained by the presence of ions of calcium in a cellular wall. Ions of calcium absorb X-ray radiation more strongly in comparison with light chemical elements. It can become the reason of observable relationship between radiographic density of cell wall and cell wall thickness.  相似文献   

16.
Flowering dogwood (Cornus florida L.) is an important understory tree species that is thought to enhance ecological calcium (Ca) cycling and soil Ca availability through high foliar Ca concentrations and rapid leaf litter decomposition. Calcium is an essential macronutrient in plants, important for stabilizing cell walls and plasma membranes. It is also an ubiquitous intracellular second messenger, helping plants sense and physiologically respond to numerous environmental cues. Analyses of total foliar Ca can be dominated by chemically sequestered Ca, which is not readily available for cellular processes. Thus, analyses of specific foliar partitions of Ca are more closely tied to Ca-dependent processes such as signal transduction. To further develop our understanding of the role of flowering dogwood in ecological Ca cycling, we evaluated foliar Ca partitioning via sequential acidic extractions. We compared Ca partitioning in flowering dogwood to that of white oak (Quercus alba L.), and found significantly more labile Ca in dogwood and a much greater proportion of Ca sequestration in oak. We compared foliar Ca partitioning in white oak at sites with dogwood to that of oaks at dogwood-absent sites, and found significantly greater labile Ca in oaks where dogwood was present. We also investigated the phenological patterns of Ca partitioning and sequestration in flowering dogwood foliage, and found preferential partitioning of Ca into the more labile and physiologically accessible pools throughout the growing season, with minimal Ca sequestration. This work helps elucidate the mechanisms and consequences associated with Ca cycling by flowering dogwood in forested systems.  相似文献   

17.
Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compound. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprising four plant functional types (broad-leaved trees, conifers, grasses and herbs). For this study, the fiber analysis after Van Soest was modified to enable the simultaneous quantitative and qualitative measurements of hemicelluloses in small sample volumes. Total hemicellulose concentrations differed markedly among functional types and tissues with highest concentration in sapwood of broad-leaved trees (31% d.m. in Fraxinus excelsior) and lowest concentration between 10 and 15% d.m. in leaves and bark of woody species as well as in roots of herbs. As for total hemicellulose concentrations, plant functional types and tissues exhibited characteristic ratios between the sum of cellulose plus lignin and hemicelluloses, with very high ratios (>4) in bark of trees and low ratios (<2) in all investigated leaves. Additional HPLC analyses of hydrolysed hemicelluloses showed xylose to be the dominant hemicellulose monosaccharide in tissues of broad-leaved trees, grasses and herbs while coniferous species showed higher amounts of arabinose, galactose and mannose. Overall, the micro-extraction method permitted for the simultaneous determination of hemicelluloses of various tissues and plant functional types which exhibited characteristic hemicellulose concentrations and monosaccharide patterns.  相似文献   

18.
Acetaldehyde and ethanol biosynthesis in leaves of plants   总被引:6,自引:4,他引:2       下载免费PDF全文
Leaves of terrestrial plants are aerobic organs, and are not usually considered to possess the enzymes necessary for biosynthesis of ethanol, a product of anaerobic fermentation. We examined the ability of leaves of a number of plant species to produce acetaldehyde and ethanol anaerobically, by incubating detached leaves in N2 and measuring headspace acetaldehyde and ethanol vapors. Greenhouse-grown maize and soybean leaves produced little or no acetaldehyde or ethanol, while leaves of several species of greenhouse-grown woody plants produced up to 241 nanograms per milliliter headspace ethanol in 24 hours, corresponding to a liquid-phase concentration of up to 3 milligrams per gram dry weight. When leaves of 50 plant species were collected in the field and incubated in N2, all higher plants produced acetaldehyde and ethanol, with woody plants generally producing greater amounts (up to 1 microgram per milliliter headspace ethanol concentration). Maize and soybean leaves from the field produced both acetaldehyde and ethanol. Production of fermentation products was not due to phylloplane microbial activity: surface sterilized leaves produced as much acetaldehyde and ethanol as did unsterilized controls. There was no relationship between site flooding and foliar ethanol biosynthesis: silver maple and cottonwood from upland sites produced as much acetaldehyde and ethanol anaerobically as did plants from flooded bottomland sites. There was no relationship between flood tolerance of a species and ethanol biosynthesis rates: for example, the flood intolerant species Quercus rubra and the flood tolerant species Quercus palustris produced similar amounts of ethanol. Cottonwood leaves produced more ethanol than did roots, in both headspace and enzymatic assays. These results suggest a paradox: that the plant organ least likely to be exposed to anoxia or hypoxia is rich in the enzymes necessary for fermentation.  相似文献   

19.
Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ13C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.  相似文献   

20.
Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring α(1,3)- or α(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号