首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The action of the antibiotics enniatin A, valinomycin, the actin homologues, gramicidin, nigericin and dianemycin on mitochondria, erythrocytes and smectic mesophases of lecithin–dicetyl hydrogen phosphate was studied. 2. These antibiotics induced permeability to alkali-metal cations on all three membrane systems. 3. The ion specificity on each membrane system was the same. 4. Enniatin A, valinomycin and the actins did not induce permeability to protons, whereas nigericin and dianemycin rendered all three membrane systems freely permeable to protons. 5. Several differences were noted between permeability induced by nigericin and that induced by gramicidin. 6. The action of all these antibiotics on mitochondrial respiration could be accounted for by changes in passive ion permeability of the mitochondrial membrane similar to those induced in erythrocytes and phospholipid membranes, if it is assumed that a membrane potential is present in respiring mitochondria.  相似文献   

2.
Summary Most of the studies devoted to the mechanism by which certain antibiotics increase the ion permeability ofbiological membranes have been carried out on artificialmodel systems. Undoubtedly one of the major reasons for this was that some of the most relevant biological membrane systems are of submicroscopic dimensions and thus inaccessible to the common electrochemical measuring techniques. This holds for the inner membrane systems of chloroplasts, mitochondria, and retinal rods. Since it is not trivial that a mechanism of action found for a model membrane works as well in a biological one with a much higher structural complexity, it seemed worth-while to study the mechanism of action of ionophorous antibiotics on the above-mentioned biological membranes. In this paper, a nonelectrochemical method for measuring both the voltage and the current across the inner chloroplast membrane (or thylakoid membrane) is established in extension of earlier work. This method is used to characterize the mode of action of valinomycin on the thylakoid membrane.  相似文献   

3.
Valinomycin is a highly flexible cyclic dodecadepsipeptide that transports ions across membranes. Such a flexibility in the conformation is required for its biological function since it has to encounter a variety of environments and liganding state. Exploration of conformational space of this molecule is therefore important and is one of the objectives of the present study that has been carried out by means of high temperature Molecular Dynamics. Further, the stability of the known bracelet-like structure of the uncomplexed valinomycin and the inherent flexibility around this structure has been investigated. The uncomplexed form of valinomycin has been simulated at 75-100 K for 1 ns in order to elucidate the average conformational properties. An alanine-analog of valinomycin has been simulated under identical conditions in order to evaluate the effect of sidechain on the conformational properties, The studies confirm the effect of sidechain on conformational equilibrium.  相似文献   

4.
The cyclic dodecapeptide PV, cyclo-(d-Val-l-Pro-l-Val-d-Pro)3, a structural analogue of the ion-carier valinomycin, increase the cation permeability of lipid bilayer membranes. This paper reports the results of two types of relaxation experiments, namely relaxation of the membrane current after a voltage jump and decay of the membrane voltage after a charge pulse in lipid bilayer membranes exposed to PV. From the relaxation data, the rate constant for the translocation of the ion carrier complex across the membrane, as well as the partition coefficient of the complex between water and membrane solution interface were computed and found to be about one order of magnitude less than the comparable values for valinomycin (Val). Furthermore, the dependence of the initial membrane conductivity on ion concentration was used to evaluate the equilibrium constant, K, of complexation between PV and some monovalent cations in water. The values of K yield the following selectivity sequence of PV: Na+ < NH4+ < K+ < Cs+ < Rb+. These and earlier results are consistent with the idea that PV promotes cation movement across membranes by the solution complexation mechanism which involves complexation between ion and carrier in the aqueous phase and transport of the carrier across the membrane. In the particular form of the solution complexation mechanism operating here, the PV present in the PV-cation complex carrying charge across the membrane derives from the side from which the current is flowing (cis-mechanism). As shown previously, valinomycin, in contrast to PV, acts by an interfacial complexation mechanism in which the Val in the Val-cation complex derives from the side toward which current is flowing (trans-mechanims). The comparison of the kinetic properties of these two closely related compounds yields interesting insights into the relationship between chemical structure and function of ion carriers.  相似文献   

5.
Summary Recent studies on the interactions of soluble proteins, membrane proteins and enzymes with phospholipid model membranes are reviewed. Similarities between the properties of such systems and the behavior of biomembranes, such as alterations in the redox potential of cytochromec after binding to membranes and effects of phospholipid fluidity on (Na + K) ATPase activity, are emphasized. The degree of correspondence between the behavior of model systems and natural membranes encourages the continuing use of model membranes in studies on protein-lipid interactions. However, some of the data on the increase of surface pressure of phospholipid monolayers by proteins and increases in the permeability of liposomes indicate that many soluble proteins also have a capability to interact hydrophobically with phospholipids. Thus a sharp distinction between both peripheral and integral membrane proteins and non-membrane proteins are not seen by these techniques. Cautious use of such studies, however, should lead to greater understanding of the molecular basis of cell membrane structure and function in normal and pathological states. Studies implicating protein-lipid interactions and (Na + K) ATPase activity in membrane alterations in disease states are also briefly discussed.An invited article.  相似文献   

6.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5 -), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier.  相似文献   

7.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+-ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+-ionophore complex across the hydrophobic core of the membrane.In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

8.
The ionic permeability coefficients, ionic transference numbers, activation energy of ion transport and breakdown voltage of bilayer lipid membranes made from dioleoylphosphatidylcholine or its mixtures with dolichyl 12-phosphate have been studied. The electrical measurements showed that dolichyl phosphate in phospholipid bilayers decreases membrane permeability, changes membrane ionic selectivity and increases membrane stability. These results are discussed in light of the aggregation behavior and the intramolecular clustering of a dolichyl phosphate molecule in phospholipid membranes. From our data we suggest that the hydrophilic part of dolichyl phosphate molecules regulates their behavior in membranes.  相似文献   

9.
The cytoplasmic membrane of bacteria and archaea determine to a large extent the composition of the cytoplasm. Since the ion and in particular the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms, strategies are needed to restrict the permeation of these ions across their cytoplasmic membrane. The proton and sodium permeabilities of all biological membranes increase with the temperature. Psychrophilic and mesophilic bacteria, and mesophilic, (hyper)thermophilic and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains low and constant (homeo-proton permeability). Thermophilic bacteria, however, have more difficulties to restrict the proton permeation across their membrane at high temperatures and these organisms have to rely on the less permeable sodium ions for maintaining a high sodium-motive force for driving their energy requiring membrane-bound processes. Transport of solutes across the bacterial and archaeal membrane is mainly catalyzed by primary ATP driven transport systems or by proton or sodium motive force driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary ATP-driven uptake systems for their carbon and energy sources. Several high-affinity ABC transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Summary Hydrogen peroxide generated from dissolved oxygen through the alloxandialuric acid cycle affected both the permeability and the stability of lipid bilayer membranes. The permeability of the artificial membranes varied directly with the hydrogen peroxide concentration. Membrane stability varied inversely with the hydrogen peroxide concentration. Bilayers formed from solutions containing both phospholipid and the antioxidant vitamin E were less permeable and more stable in the presence of hydrogen peroxide than bilayers generated from solutions containing phospholipid alone. Peroxidation of phospholipid monolayers caused first an expansion of the films presumably through the introduction of peroxide groups. Further oxidation of phospholipid monolayers led to contraction of the films presumably through the formation of water-soluble products. The results of the monolayer studies and a consideration of the possible kinetics for the peroxidation reaction sequence have been used to explain the changes in the permeability and the stability of lipid bilayer membranes. Our data suggest that oxidation of lipid in biological membranes may first increase membrane permeability and then decrease membrane stability.  相似文献   

11.
Summary A transport model for translocation of the protonophore CCCP across the red cell membrane has been established and cellular CCCP binding parameters have been determined. The time course of the CCCP redistribution across the red cell membrane, following a jump in membrane potential induced by valinomycin addition, has been characterized by fitting values of preequilibrium extracellular pHvs. time to the transport model. It is demonstrated, that even in the presence of valinomycin, the CCCP-anion is well behaved, in that the translocation can be described by simple electrodiffusion. The translocation kinetics conform to an Eyring transport model, with a single activation energy barrier, contrary to translocation across lipid bilayers, that is reported to follow a transport model with a plateau in the activation energy barrier. The CCCP anion permeability across the red cell membrane has been calculated to be close to 2.0×10–4 cm/sec at 37°C with small variations between donors. Thus the permeability of CCCP in the human red cell membrane deviates from that found in black lipid membranes, in which the permeability is found to be a factor of 10 higher.  相似文献   

12.
Beef heart mitochondrial cytochrome c oxidase has been incorporated into membrane vesicles derived from the homofermentative lactic acid bacterium Streptococcus cremoris. Proteoliposomes containing cytochrome c oxidase were fused with the bacterial membrane vesicles by means of a freeze/thaw sonication technique. Evidence that membrane fusion has taken place is presented by the demonstration that nonexchangeable fluorescent phospholipid probes, originally present only in the bacterial membrane or only in the liposomal membrane, are diluted in the membrane after fusion and, by sucrose gradient centrifugation, indicating a buoyant density of the membranes after fusion in between those of the starting membrane preparations. The fused membranes are endowed with a relatively low ion permeability which makes it possible to generate a high proton motive force (100 mV, inside negative and alkaline) by cytochrome-c-oxidase-mediated oxidation of the electron donor system ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/cytochrome c. In the fused membranes this proton motive force can drive the uptake of several amino acids via secondary transport systems. The incorporation procedure described for primary proton pumps in biological membranes opens attractive possibilities for studies of proton-motive-force-dependent processes in isolated membrane vesicles from bacterial or eukaryotic origin which lack a suitable proton-motive-force-generating system.  相似文献   

13.
Summary A number of lens fiber cell integral membrane proteins have been localized to junctional regions where they have been proposed to play a role in either mediating or controlling cell-to-cell communication. We have examined the effect of three lens fiber cell membrane proteins, MP20, MP26 and MP70, on the permeability properties of unilamellar phospholipid liposomes. This approach has been previously used to examine the channel-forming properties of MP26. Liposome permeability was determined by measuring the effect of Co2+ on the quenching of the fluorescence of N-4-nitrobenzo-2-oxa-1,3 diazole phosphatidyl ethanolamine (NBD-PE)-containing liposomes as described previously by Scaglione and Rintoul (Invest. Ophthalmol. Vis. Sci. 30:961–966, 1989). The effect of all three proteins on liposome permeability was similar. Permeability was dependent on the protein/phospholipid ratio and was not significantly affected by agents known to modify gap junctional permeability in vivo. Glycophorin A, a non-channel-forming integral membrane protein derived from erythrocytes, was also shown to increase the permeability of unilamellar phospholipid liposomes. The ability of a non-channel membrane protein to increase Co2+ quenching of NBD-PE-containing liposomes (presumably in a nonspecific manner) indicates that reports describing the permeability of lens membrane protein-containing liposomes should be interpreted with caution in terms of their relationship to cell-to-cell communication.We would like to thank Dr. Rita Meyer for technical assistance with the freeze-fracture electron microscopy, Drs. Wolfgang Baumann and Barbara Malewicz for the purification of bovine lens lipids, and Dr. Gary Nelsestuen for the use of both the fluorescence and photon correlation spectrophotometers as well as for many helpful discussions. This research was supported by NIH grant EY 05684.  相似文献   

14.
Stability constants of sodium and potassium complexes of valinomycin in some alcohols and water—organic solvent mixtures have been determined by titration, using circular dichroism to monitor complex formation. Constants range from 101 to 106 M−1. Stability of the potassium and sodium complexes increases with decreasing dielectric constant, but the ratio of the constants remains about 103–104. As others have shown, a similar selectivity for K+ is observed in a number of other types of measurements involving valinomycin. These include the permeability and conductance ratios which characterize the selectivity of cation transport through membranes and the ratio of salt extraction equilibrium constants. On the basis of data presented here, and elsewhere, it is suggested that conformational constraints within the depsipeptide part of the complexes aid ion selectivity and that differences in cation solvation and carbonyl ligand binding energies make an important, roughly equal, contribution.  相似文献   

15.
Rates of M+/H+ exchange (M+=K+, Na+) across phospholipid membranes by ionophore mediated electroneutral translocations and transports through channels could either increase or decrease or change negligibly on adding the polar molecule phloretin to the membrane. The changes depend on pH, the concentration and choice of M+ and choice of ionophore/channel. Such diverse behaviours have been inferred from studies on the decay of the pH difference across soybean phospholipid vesicular membrane (=ΔpH). The transporters used in this study are (a) the exchange ionophores: nigericin, monensin; (b) combinations of alkali metal ion carriers, valinomycin or nonactin with weak acids carbonyl cyanide m-chlorophenylhydrazone or 2,4-dinitrophenol and (c) channels formed by gramicidin A. All the diverse results can be rationally explained if we take note of the following. (i) The rate limiting steps are associated with the transmembrane translocations involving the rate limiting species identified in the literature. (ii) Phloretin in the membrane decreases the apparent M+ dissociation constant, KM, of the M+ bound ionophores/channels which has the effect of increasing the concentration of these species. (iii) The concentrations of H+ bound ionophores/channels decrease on adding phloretin. (iv) Phloretin inhibits ternary complex formation (involving valinomycin or nonactin, M+ and an anion) by forming 1:2 complexes with valinomycin–M+ or nonactin–M+. (v) On adding 6-ketocholestanol to the membrane (instead of phloretin) KM increases. The decreases/increases in KM mentioned above are consistent with the consequences of a hypothesis in which phloretin decreases and 6-ketocholestanol increases the positive internal membrane dipole potential.  相似文献   

16.
In biological membranes there are large differences in the permeabilities of K+ and Na+, the permeability of K+ being the higher in the polarized membrane. In excitable membranes both the absolute and relative permeabilities are strongly affected by the electric field. It is shown that these changes can be explained by simple electrostatically induced conformational changes at the mouths of pores, due to the deflection of ionized long-chain molecules. A conformational change requiring a low free energy for its production, may result in a large change in the free energy of activation, as a result of the relative magnitudes of elastic and inertial forces. The energy required to partially dehydrate the two ion species plays an essential role in the process.  相似文献   

17.
The reversibility of the binding of ionophores to the thylakoid membrane is studied. While gramicidin binds practically irreversibly, valinomycin and nonactin bind reversibly, however, only a small fraction (about 1 %) of the membrane-bound valinomycin or nonactin is active in ion transport. The current-voltage relationship is evaluated under these circumstances. We have found that it is practically linear. This together with the relationship between current and ion concentration agrees qualitatively with the results reported for bimolecular lipid membranes, which contain a large fraction of negatively charged lipids. For the ionophores, valinomycin and nonactin, the binding equilibria (K ≈ 104) and the turnover numbers (≈ 3 · 104/s) are evaluated for their action on the thylakoid membrane. Possible reasons for the inactivity of the majority of membrane-bound ionophore molecules are discussed.  相似文献   

18.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

19.
Summary We have incorporated into planar lipid bilayer membranes a voltage-dependent, anion-selective channel (VDAC) obtained fromParamecium aurelia. VDAC-containing membranes have the following properties: (1) The steady-state conductance of a many-channel membrane is maximal when the transmembrane potential is zero and decreases as a steep function of both positive and negative voltage. (2) The fraction of time that an individual channel stays open is strongly voltage dependent in a manner that parallels the voltage dependence of a many-channel membrane. (3) The conductance of the open channel is about 500 pmho in 0.1 to 1.0m salt solutions and is ohmic. (4) The channel is about 7 times more permeable to Cl than to K+ and is impermeable to Ca++. The procedure for obtaining VDAC and the properties of the channel are highly reproducible.VDAC activity was found, upon fractionation of the paramecium membranes, to come from the mitochondria. We note that the published data on mitochondrial Cl permeability suggest that there may indeed be a voltage-dependent Cl permeability in mitochondria.The method of incorporating VDAC into planar lipid bilayers may be generally useful for reconstituting biological transport systems in these membranes.  相似文献   

20.
A range of physiological processes has been imputed to lateral domain formation in biological membranes. However the molecular mechanisms of these functions and the details of how domain structures mediate these processes remain largely speculative. That domains exist in biomembranes and can be modeled in relatively simple lipid systems has contributed to our understanding of the principles governing phase behaviour in membranes. A presentation of these principles is the subject of this review. The condensing effect of sterols on phospholipids spread as monomolecular films at the air-water interface is described in terms of the dependence of the effect on sterol and phospholipid structure. The thermodynamics of sphingomyelin-cholesterol interactions are considered from calorimetric, densitometry and equilibrium cholesterol exchange measurements. Biophysical characterisation of the structure of liquid-ordered phase and its relationship with liquid-disordered phase is described from spectroscopic and X-ray scattering studies. Finally, the properties of liquid-ordered phase in the context of membrane physiology and permeability barrier properties are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号