首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

2.
An improved method is described for the rapid and simple preparation of alpha-[32P]dATP and alpha-[32P]ATP from 32Pi in good yields and with specific activities from 20 - 150 Ci/mmol. The two-step procedure involves the chemical synthesis of the mononucleotide followed by its enzymic conversion to the triphosphate with myokinase (EC 2.7.4.3) and pyruvate kinase (EC 2.7.1.40) in the presence of trace amounts of dATP or ATP to prime the reaction. The two steps are carried out in the same reaction flask and the only purification step required is a step-wise elution from a column of DEAE-cellulose.  相似文献   

3.
Uniformly 32P-labeled polyribonucleotides of high specific activity can be rapidly and easily synthesized from commercially available ribonucleoside 5'-[alpha-32P]triphosphates by using two enzymes in sequence. Myosin ATPase completely and irreversibly converted any triphosphates to diphosphates in 10 min. The product diphosphates, without purification, can be polymerized by polynucleotide phosphorylase (PNPase) in 1 h with an average yield of 60%. By choosing the desired molar ratio of radioactive and nonradioactive tri- or diphosphates, polymers of a wide range of specific activity can be obtained. Since myosin ATPase and PNPase both have little base specificity, the method can be used to synthesize a radiolabeled polymer of any desired base composition.  相似文献   

4.
1. The rat-liver cell-sap material from which 3-[32P]phosphohistidine was previously isolated after incubation with [gamma-32P]ATP and alkaline hydrolysis, was shown to increase about 6-fold on a high-carbohydrate diet. This increase in 32P labelling corresponded to the increase in ATP citrate lyase activity of livers of rats fed on a high-carbohydrate diet, as reported by others. 2. ATP citrate lyase [ATP:citrate oxaloacetate-lyase (CoA-acetylating and ATP-dephopshorylating), EC 4.1.3.8] was purified from rat liver essentially according to the method of Plowman and Cleland (J. Biol. Chem., 242 (1967) 4239). The purified enzyme was incubated for a short time at 0 degree with [gamma-32P]ATP in the presence of 20 mM magnesium acetate. The phosphorylated protein was hydrolysed in alkali and the main part of the radioactivity was identified as 3-[32P]phosphohistidine. The identity of the phosphorylated amino acid was established by Dowex-1 chromatography, paper electrophoresis, paper chromatography and by analysis of the stability to acid. 3. It is concluded from these and previous results from this laboratory that ATP citrate lyase and nucleoside diphosphate kinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) account for most of the normal rat-liver cell-sap protein which is rapidly phosphorylated by ATP.  相似文献   

5.
A method for the synthesis and purification of guanosine 5'-[gamma-S]triphosphate labeled with 32P in the beta-position is described. The first step in the synthesis involves the quantitative transfer of 32Pi from [gamma-32P]dATP to 5'-GMP catalyzed by GMP kinase. Further incubation of the beta-32P]GDP product with [gamma-S]GTP and nucleoside diphosphate kinase results in the synthesis of [beta-32P][gamma-S]GTP with a yield of 10 to 18%. The 32P-labeled [gamma-S]nucleotide is purified by binding to mercury-agarose and eluting with buffer containing beta-mercaptoethanol. Specific incorporation of 32P into the beta-position was demonstrated by treating [beta-32P][gamma-S]GTP with 7% formic acid to remove the gamma-thiophosphate and digesting the remaining [beta-32P]GDP with nucleotide pyro-phosphatase. Although 5'-GMP was released after pyrophosphatase digestion, the only 32P radioactivity detected was as inorganic phosphate.  相似文献   

6.
Simple one step assay methods for adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) and cyclic nucleotide phosphodiesterases (3',5'-cyclic nucleotide 5'-nucleotidohydrolase EC 3.1.4.17) have been developed. [alpha-32-P] ATP is used as the substrate for adenylate cyclase. Acid-heat destruction of [32-P] ATP remaining after the cyclase reaction followed by Zn-Ba treatment quantitatively leaves cyclic [32-P] AMP in the supernatant essentially free from other 32-P-containing compounds. This assay method requires no corrections for recovery and routinely yields blank values less than 0.03 per cent. If higher sensitivity is desired, a simple 5 min alumina column step can be introduced into the procedure which quantitatively elutes cyclic [32-P] AMP directly into a liquid scintillation vial and lowers the blank values to less than 0.002 per cent. This method is rapid and easily performed, without sacrificing high reliability, specificity, or sensitivity. One step phosphodiesterase assays are easily accomplished using 32-P-labeled cyclic nucleotides as substrates. Descending paper chromatography of the reaction mixture on individual 2 cm wide paper strips gives a complete and quantitative separation of all possible products including [5'-32-P] AMP and [5'-32-P] GMP from their respective 32-P-labeled 3',5'-cyclic nucleotides in 1-2 h. The paper strips are cut, inserted in scintillation vials without scintillant and the 32-P-products determined by Cerenkov counting. Low blank values of less than 0.5 per cent and the use of high specific activity 32-P-labeled cyclic nucleotide substrates make this method the most reliable and most sensitive phosphodiesterase assay described to date. Because of the simplicity, specificity, and high sensitivity obtainable with these assay methods using 32-P-labeled substrates, we have also devised simple conditions for the preparation and purification of [alpha-32-P] ATP, cyclic [32-P] AMP and cyclic [32-P] GMP with specific activities in excess of 100 Ci/mmol. These high specific activity 32-Plabeled cyclic nucleotides are important for these new assay methods and are also useful to follow purification recovery of endogenous cyclic AMP and cyclic GMP from biological materials before protein binding or radioimmunological isotope displacement assays when performed in the femtomole range.  相似文献   

7.
8.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

9.
A rapid method for the measurement of [γ-32P]ATP specific radioactivity in tissue extracts containing other 32P-labeled compounds is described. The neutralized acid extract is incubated with cyclic AMP-dependent protein kinase, cyclic AMP and casein. The incorporation of 32P into casein from [γ-32P]ATP is measured by perchloric acid precipitation of the protein on filter paper. 32P-Casein formation is linearly related to the specific radioactivity of the [γ-32P]ATP. Separation of ATP from other 32P-labeled compounds is not required for the assay. Application of this method in the evaluation of [γ-32P]ATP specific radioactivity in two rat cardiac muscle preparations exposed to 32Pi is demonstrated.  相似文献   

10.
A rapid, simple and inexpensive procedure is described for the preparation of purine ribo-and deoxyribonucleoside triphosphates specifically and highly radiolabeled with [32P]phosphate in the beta position. The method involves two successive enzymatic reactions: conversion of donor [gamma-32P]ATP in the presence of an excess of acceptor 5'-mononucleotide to the 5'-diphosphates by myokinase or guanosine 5'-monophosphate kinase followed by phosphorylation with pyruvate kinase to yield 5'-triphosphates.  相似文献   

11.
A simple, rapid, and inexpensive method is described for the synthesis of γ-32P-labeled ribo- or deoxyribonucleoside triphosphates. The procedure involves chemical synthesis of [32P]acetylphosphate and subsequent phosphorylation of nucleoside diphosphates using acetate kinase (EC 2.7.2.1) and a final purification step. The entire procedure is performed 8 h or less.  相似文献   

12.
We found 8-azidoadenosine 5'-diphosphate to be a phosphoryl acceptor in the enzymatic conversion of 1,3-diphosphoglyceric acid to 3-phosphoglycerate. This has allowed us to synthesize in a single-step procedure carrier-free 8-azidoadenosine 5'-[gamma-32P]triphosphate, requiring no further purification of the end product. The synthesized 8-azidoadenosine 5'-[gamma-32P]triphosphate has been characterized and shown to meet all the criteria for a specific photoreactive ATP analogue.  相似文献   

13.
An enzymatic method for the synthesis of [beta-32P]ADP from [gamma-32P]ATP is described. This substrate is required for the assay of ADPase and is not commercially available. The method described results in a preparation of [beta-32P]ADP of high purity with a yield of approximately 40% the theoretical obtainable.  相似文献   

14.
ATP-sensitive potassium (K(ATP)) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We have previously reported that Kir6.2 can be directly labeled by 8-azido-[gamma-(32)P]ATP. However, the binding affinity of 8-azido-ATP to Kir6.2 was low probably due to modification at 8' position of adenine. Here we demonstrate that Kir6.2 can be directly photoaffinity labeled with higher affinity by [gamma-(32)P]ATP-[gamma]4-azidoanilide ([gamma-(32)P]ATP-AA), containing an unmodified adenine ring. Photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-AA is not affected by the presence of Mg(2+), consistent with Mg(2+)-independent ATP inhibition of K(ATP) channels. Interestingly, SUR1, which can be strongly and specifically photoaffinity labeled by 8-azido-ATP, was not photoaffinity labeled by ATP-AA. These results identify key differences in the structure of the nucleotide binding sites on SUR1 and Kir6.2.  相似文献   

15.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [alpha-32P]ATP, [gamma-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the alpha-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

16.
Several methods for the chemical synthesis of gamma-32P-labeled and unlabeled nucleoside 5(')-triphosphates and thiamine triphosphate (ThTP) have been described. They often proved unsatisfactory because of low yield, requirement for anhydrous solvents, procedures involving several steps or insufficient specific radioactivity of the labeled triphosphate. In the method described here, all these drawbacks are avoided. The synthesis of [gamma-32P]ThTP was carried out in one step, using 1,3-dicyclohexyl carbodiimide as condensing agent for thiamine diphosphate and phosphoric acid in a dimethyl sulfoxide/pyridine solvent mixture. Anhydrous solvents were not required and the yield reached 90%. After purification, [gamma-32P]ThTP had a specific radioactivity of 11Ci/mmol and was suitable for protein phosphorylation. The method can also be used for the synthesis of [gamma-32P]ATP of the desired specific radioactivity. It can easily be applied to the synthesis of unlabeled ThTP or ribo- and deoxyribonucleoside 5(')-triphosphates. In the latter case, inexpensive 5(')-monophosphate precursors can be used as reactants in a 20-fold excess of phosphoric acid. Deoxyribonucleoside 5(')-triphosphates were obtained in 6h with a yield of at least 70%. After purification, the nucleotides were found to be suitable substrates for Taq polymerase during polymerase chain reaction cycling. Our method can easily be scaled up for industrial synthesis of a variety of labeled and unlabeled triphosphoric derivatives from their mono- or diphosphate precursors.  相似文献   

17.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

18.
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.  相似文献   

19.
Incubation of blowfly salivary gland homogenates with 30 microM [gamma-32P]ATP resulted in a rapid, Mg2+-dependent, synthesis of [32P]polyphosphoinositides and [32P]phosphatidic acid. 5-Methyltryptamine, in the presence of 10 microM guanosine 5'-(3-O-thio)trisphosphate, reduced the net accumulation of 32P label into phosphatidylinositol-4,5-P2 and phosphatidylinositol-4-P by 35 and 20%, respectively. 5-Methyltryptamine did not affect synthesis of [32P]phosphatidic acid. Phosphorylation of polyphosphoinositides was not affected by 5-methyltryptamine. In membranes labeled in vitro with [gamma-32P]ATP, 5-methyltryptamine stimulated a rapid breakdown of the [32P]polyphosphoinositides. These results indicate that in blowfly salivary gland homogenates, hormone stimulates breakdown of the newly synthesized polyphosphoinositides. In the presence of hormone, the rate of polyphosphoinositide synthesis does not compensate for the rate of polyphosphoinositide degradation.  相似文献   

20.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase activity is enhanced about 5 fold by 2 mM of either AMP or ADP. Activation constants, Ka, for AMP and ADP are 17 microM and 430 microM respectively, showing that AMP is a more potent activator than ADP. This property is expressed by increasing not only the rate of reductase inactivation but also the rate of reductase phosphorylation from [gamma-32P]ATP. GTP can replace ATP as substrate of reductase kinase but GMP and GDP cannot replace AMP as activators. Kinetic studies show that ATP can only act as a substrate. Nucleoside mono or diphosphates and nucleoside triphosphates, thus, appear to bind to different sites on microsomal HMG-CoA reductase kinase. Nucleoside mono or diphosphates act as allosteric activators of reductase kinase. The adenosyl moiety and the unaltered phosphate ester at the 5' position are two essential features of the activator molecule. Phosphorylation of reductase either by microsomal or cytosolic AMP-activated reductase kinase produces an 80% inactivation, with a concomitant incorporation of 0.8 mol of 32P per mol of reductase (Mr 55,000). In both cases exhaustive tryptic digestion of 32P-labeled HMG-CoA reductase, which had been denatured in 2M urea, yields two major phosphopeptides, the phosphoryl group being bound to serine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号