首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

2.
Summary A plant regeneration system from cell suspension cultures was established in an important ornamental crop, Limonium sinuatum Mill. cv. ‘Early Rose’. Friable callus was initially induced from leaf segments of in vitro-cultured seedlings on 0.25% gellan gum-solidified half-strength Murashige and Skoog [1/2MS] medium containing 1.0 mg l−1 (4.14 μM) picloram. These calluses were maintained as cell suspension cultures, which showed high proliferation ability with about 80 times increase in fresh weight during the 2-wk interval of subculture. Shoot regeneration from these cell cultures was achieved by cytokinins, especially zeatin, which was the most effective in producing normal shoots with reduced hyperhydration when used in combination with 0.5% gellan gum. Shoot regeneration ability was different among the cell lines originated from each different seedling. Shoot formation was observed at different frequencies on four of five cell lines whereas one cell line showed no shoot differentiation. Regenerated shoots detached from callus readily rooted 1 mo. after the transfer onto 0.5% gellan gum-solidified 1/2MS medium lacking plant growth regulators. The plantets were successfully transferred to the greenhouse after acclimatization. No ploidy changes were observed in the callus induced or in the regenerated plantlets. The regenerated plantlets that were transferred to the greenhouse after acclimatization grew normally and did not any morphological signs of somaclonal variation.  相似文献   

3.
Investigations were performed to confirm the optimal in vitro culture condition for callus induction and plant regeneration, to observe if somoclonal variation occurs among regenerated plants at the ploidy level and to analyse the chromosomal location of 5S and 18S-26S rRNA gene families using fluorescence in situ hybridization in callus-derived plants of Allium cyaneum. High-est callus initiation was achieved with bulb explants cultured on MS medium supplemented with 2,4-D and BAP at 1 mg l–1 each. A total of 195 plants was obtained when using MS medium supplemented with 1 mg l–1 NAA and 5 mg l–1 BAP; about 92% were diploid having 2n=16; 8% showed a variation in ploidy level. Using digoxigenin-labelled 5S rRNA and biotin-labelled 18S-26S rRNA gene probes, we compared the fluorescence in situ hybridization patterns of autotetraploid plants with the A. cyaneum wild type. The 5S rRNA gene sites were detected on the interstitial region in the short arm of chromosome 4 and on the interstitial region in both arms of chromosome 7. The 18S-26S rRNA gene sites were detected on the terminal region of the short arm, including the satellite of chromosome 5, as well as on a part of chromosome B. The chromosomal location of both rRNA genes in regenerated autotetraploid plants corresponded to those of the wild species. Received: 20 March 1998 / Revision received: 15 June 1998 / Accepted: 8 July 1998  相似文献   

4.
Several plant growth regulators BA, TDZ, 2,4- and Kn were tested alone or in combination for their capacity to induce indirect somatic embryogenesis from leaf and internode explants of Paulownia elongata. Calli were produced when leaf explants were cultured on Murashige and Skoog (MS) medium containing 3 % sucrose, 0.4 % phytagel, 4 mg l-1 TDZ and 0.1 mg l-1 Kn after 3 weeks and the initiation rate was 54.1%. After subculturing on the same medium, embryos at various developmental stages (globular, heart and torpedo shaped) were transferred for maturation onto MS medium supplemented with 3 % sucrose, 0.4 % phytagel, 0.1 mg l-1 TDZ, 1 mg l-1 Kn and 2 mM glutamine. An average of 50.7 somatic embryos were obtained from 100 mg of embryogenic callus after 4 weeks at high frequency (64.7 %). Afterward, mature somatic embryos were isolated and cultured on hormone-free MS medium for germination (80 %) and development into plantlets. Plantlets were transferred to pots with a mixture of peat and perlite in a 3:1 ratio and showed a survival rate of 70–80 %. Plantlets regenerated by this procedure were morphologically identical to the donor material and developed normally in the greenhouse.  相似文献   

5.
Summary The objective of this study was to evaluate the ability ofHosta Golden Scepter (GS) ovary explants to generate adventitious shootsin vitro. Ovaries were transversely cut into halves and transferred to petri dishes containingHosta initiation medium supplemented with naphthaleneacetic acid (NAA) at 2.5 μM and N6-benzyladenine (BA) at 10 μM. GS produced adventitious shoots from the ovary base via organogenesis. The number of adventitious shoots regenerated from callus increased linearly with repeated subculturing on Murashige and Skoog (MS) medium supplemented with 2.5 μM NAA and 10 μM BA. The number of multiple shoots developing from callus (15.8), shoot tip (8.4), leaf (6.7), and root (4.3) occurred on MS medium supplemented with 2.5 μM NAA and 20–30 μM BA. There were significant differences in the number of shoots regenerated from shoot tips and callus on MS medium with 50 and 100 mgmyo-inositol per l. Similarly, there were significant differences in the number of axillary shoots and adventitious shoots produced with 20 g/l sucrose treatment.  相似文献   

6.
In vitro breeding and somaclonal variation were used as tools to improve the potential of Indian mustard (Brassica juncea L.) to extract and accumulate toxic metals. Calli from B. juncea were cultivated on a modified MS medium supplemented with 10–200 μM Cd or Pb. Afterwards, new B. juncea somaclones were regenerated from metal-tolerant callus cells. Three different phenotypes with improved tolerance of Cd, Zn and Pb were observed under hydroponic conditions: enhanced metal accumulation in both shoots and roots; limited metal translocation from roots to shoots; reduced accumulation in shoots and roots. Seven out of thirty individual variants showed a significantly higher metal extraction than the control plants. The improvement of metal shoot accumulation of the best regenerant (3× Cd, 1.6× Zn, 1.8× Pb) and metal extraction (6.2× Cd, 3.2× Zn, 3.8× Pb) indicated a successful breeding and selection of B. juncea, which could be used for phytoremediation purpose.  相似文献   

7.
A procedure for rapid multiplication of Chrysanthemum morifolium RAMAT cv. Birbal Sahni using leaf callus and stem (nodal/internodal) callus as well as node and apical shoots has been developed. Murashige and Skoog's medium (1962) supplemented with 2mg/1 2,4-D yielded good green calli from both leaf and stem segments within 2 weeks. About 1 cm × 1 cm callus regenerated 2–3 shoots after 3 weeks on MS solid medium supplemented with 0.1 mg/l IAA and 0.2 mg/l BAP. Each of the regenerated shoots when transferred to the same shooting medium without agar yielded about 150 new shoots, which in turn regenerated roots after another week in MS half strength or modified White's media (Rangaswamy, 1961). It has been estimated that about 1014 plantlets could be produced in a year from one expiant following the proposed protocol.Abbreviations BAP 6-benzylaminopurine - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog's (1962) medium  相似文献   

8.
Callus was initiated from petiole explants of Heracleum candicans on MS medium fortified with BAP and 2,4-D ( 0.5 mg I-1 each). Maximum shoot differentiation from callus occurred on MS medium containing 1 mg I-1 BAP and 0.2 mg I-1 NAA. The regenerated shoots were rooted on MS medium supplemented with 1 mg I-1 IBA. The rooted plants were transferred to the field after successful hardening in pots containing vermiculite. All regenerated plants were diploid with 2n=22 chromosomes in their root tip cells.  相似文献   

9.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

10.
Highly morphogenic callus cultures were isolated from stamens of a wild peanut species, Arachis paraguariensis. These cultures were initiated on modified N6 medium containing 0.2 mg1l-1 4amino-3,5,6-trichloro-picolinic acid (picloram) and 0.5 mg l-1 6-benzylaminopurine (BAP) and were maintained on modified N6 medium with 0.008 mg l-1 picloram and 0.25 mg l-1 BAP. Buds formed on the calli growing on the maintenance medium developed into shoots when they were transferred to a MS salts based medium with no hormones. The cultures could also be maintained as a suspension culture in N6 liquid medium. When cell clumps larger tham 840 m were collected from the suspension culture and transferred to MS medium without hormones, they formed shoots in liquid culture. Root formation rarely occurred in agar or liquid cultures. Therefore, grafting to stems of rooted seedlings was used to obtain plants from regenerated shoots. Eight out of 50 field grown plants produced viable seed.  相似文献   

11.
Summary A method was developed for in vitro regeneration of plants via somatic embryogenesis in Chorispora bungeana, an alpine plant with freeze-tolerance, using cell suspensions initiated from leaf-derived callus. Primary calli were induced from leaves of C. bungeana grown on Murashige and Skoog (MS) media supplemented with 4.0 mg l−1 gibberellic acid (GA3), 0.2 mgl−1 α-naphthaleneacetic acid (NAA) and 0.2 mgl−1 2,4-dichlorophenoxyacetic acid (2,4-D). Suspension culture was initiated by incubating the callus particulates in liquid MS medium supplemented with 1.0 mgl−1 kinetin (KT) and 0.2 mgl−1 NAA. Individual early cotyledonary-stage somatic embryos isolated from cell suspension developed into whole plants on medium containing high levels of sucrose (60 and 90 gl−1), whereas lower sucrose concentrations (0 and 30 gl−1) were inhibitory to main root development. On the MS medium with 90 gl−1 sucrose, one regenerated plant exhibited hetero-morphologic leaves, while other plants grown on different media showed a transformation from stem to root.  相似文献   

12.
Regeneration of adventitious shoots from leaf and petiole pieces of Gerbera jamesonii has been obtained on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins and cytokinins. About 75’77 per cent of the calli from both types of the explants produced 12’15 shoots per callus with 3 mg l?1 SAP. Auxins and kinetin, separately failed to produce shoots. The shoots regenerated on the callus induction medium (elM). The regenerated shoots multiplied with 1 mg l?1 SAP, were rooted on MS medium containing 1mg l-1 BAP + 0.1 mg l-1 IAA. The plants obtained were transferred to pots and acclimatized with 60’70 per cent success.  相似文献   

13.
Several plant growth regulators BA, TDZ, 2,4- and Kn were tested alone or in combination for their capacity to induce indirect somatic embryogenesis from leaf and internode explants of Paulownia elongata. Calli were produced when leaf explants were cultured on Murashige and Skoog (MS) medium containing 3 % sucrose, 0.4 % phytagel, 4 mg l-1 TDZ and 0.1 mg l-1 Kn after 3 weeks and the initiation rate was 54.1%. After subculturing on the same medium, embryos at various developmental stages (globular, heart and torpedo shaped) were transferred for maturation onto MS medium supplemented with 3 % sucrose, 0.4 % phytagel, 0.1 mg l-1 TDZ, 1 mg l-1 Kn and 2 mM glutamine. An average of 50.7 somatic embryos were obtained from 100 mg of embryogenic callus after 4 weeks at high frequency (64.7 %). Afterward, mature somatic embryos were isolated and cultured on hormone-free MS medium for germination (80 %) and development into plantlets. Plantlets were transferred to pots with a mixture of peat and perlite in a 3:1 ratio and showed a survival rate of 70–80 %. Plantlets regenerated by this procedure were morphologically identical to the donor material and developed normally in the greenhouse.  相似文献   

14.
Long-term regeneration of sugarcane (Saccharum spp. hybrid and Saccharum spontaneum L.) callus cultures was achieved by selection of green callus on MS agar medium containing 0.5 mgl-1 picloram or 2,4-D. Newly initiated sugarcane callus cultures were a complex mixture of different tissue types including white, nonregenerative and green, regenerative tissues. The proportion of the tissue types changed as a function of time in culture, genotype, and amount and kind of auxin. Green callus on picloram media always regenerated green plants. Nine hybrids and ten wild relatives of sugarcane produced green calli on picloram media whereas only three hybrids were grown as green calli on 2,4-D media in long-term culture. Green calli were inoculated into liquid MS medium with 0.5 mgl-1 picloram for suspension culture. These cultures were totipotent after 19 months. For routine culture, we initiated callus cultures on modified MS medium with 3 mgl-1 2,4-D, then in two to three weeks we subcultured callus on MS medium with 0.5 mgl-1 picloram and selected for green callus. Green calli regenerated large numbers of green plants after more than four years.  相似文献   

15.
Callus cultures were initiated from leaf bases of turmeric on Murashige and Skoog's basal medium (MS) supplemented with dicamba, picloram (2 mg l−1) or 1-naphthaleneacetic acid (NAA) (5 mg l−1) in combination with benzyladenine (BA) (0.5 mg l−1). On transfer of callus cultures to medium supplemented with benzyladenine (BA) (5 mg l−1) in combination with triiodebenzoic acid (TIBA) or 2,4-dichlorophenoxyacetic acid (2,4-D) (0.1 mg l−1), green shoot primordia were seen to differentiate from the surface of the callus. On transfer of regenerating cultures to half MS media supplemented with Kn, shoot primordia developed into well developed shoots. When shoots were transferred to medium devoid of phytohormones, complete rooted plants were obtained. Ninety percent of the plants survived to maturity on transfer to soil. Random Amplified Polymorphic DNA (RAPD) analysis of eight regenerated plants using 14 primers when separated on non-denaturing polyacrylamide gels showed 38 novel bands. About 51 bands present in the control were absent in the regenerants. The result indicates that variation at DNA level has occurred during in vitro culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.  相似文献   

17.
Callus cultures were established from seedling explants of Pergularia daemia (Forsk) Chiov on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins. Optimal callus developed from leaf explants on MS medium supplemented with 2,4-D (2 mg l?1) + 2iP (0.1 mg l?1), was used for morphogenesis. Adventitious shoots were regenerated (70%) from the calli on MS medium supplemented with NAA (0.1 mg l?1)+ BAP (2 mg l?1). Individual shoots were rooted on half strength MS medium supplemented with 0.1 mg l?1 IBA. Plantlets with well developed roots were successfully transferred to soil and 50% of the transferred plants survived.  相似文献   

18.
Surface sterilized seeds and mesocotyls from sterile seedlings from Panicum bisulcatum Thumb., as well as basal parts of leaves and mesocotyls from sterile seedlings, and seeds from Panicum milioides Nees ex. Trin were used as explants to induce callus on a Murashige and Skoog medium supplemented with 2.5 to 10 mg/l of 2,4-D. Subculturing of the white callus from P. milioides and of the brown callus from P. bisulcatum on a medium containing 0.1 mg/l 2,4-D and 10 g/l sucrose led in both species to the appearance of green structures from which plants could be regenerated. Plants were regenerated by an organogenetic process in P. milioides, while P. bisulcatum plants were regenerated both via organogenesis and somatic embryogenesis. 1032 and 94 plants, from P. bisulcatum and P. milioides, respectively, were transferred into soil, and about 90% of them were grown to maturity and set seeds.Abbreviations MS Murashige and Skoog medium (15) - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid  相似文献   

19.
Plant regeneration was achieved from coleoptile tissue of wheat (Triticum aestivum L. cv. Kharachia-65). Coleoptiles (1.0 - 3.5 cm long) were excised from 2- to 5-d-old seedlings and cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D - 0.5, 2.5, and 5.0 mg dm-3). Cream, friable callus was obtained after 6 weeks of inoculation. This callus was sub-cultured on MS medium supplemented with 2,4-D (2.5 mg dm-3) and 5 % coconut water. After 6 weeks of sub-culturing white, cream or pale, friable, nodular callus was obtained. Plant regeneration occurred when this callus was sub-cultured on MS medium supplemented with 0.2 mg dm-3 1-naphthalene acetic acid + 1.0 mg dm-3 6-benzylaminopurine. For rooting, regenerated shoots or plantlets were transferred on MS medium supplemented with 0.5 mg dm-3 indole-3-acetic acid. Rooted plantlets were directly transferred into pots and grown under field conditions. Seed setting invariably occurred in all plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Young leaf and internodal stem segments of Gaillardia pulchella, collected from wild species re-established in the greenhouse, were used to initiate callus on Murashige & Skoog medium supplemented with NAA (2.0 mgl−1) and BA (0.4 mgl−1). Callus formed after 10 to 14 days in the dark. Cultures were transferred to fresh medium and placed under lighted conditions where shoot formation occurred approximately 14 to 30 days after initiation. Callus sub-cultured at 14 to 21-day intervals continued to produce primordia for several weeks. Flowers were produced by regenerated shoots maintained on MS medium, but roots did not develop until the plantlets were transferred to soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号