首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study, we reported the isolation of a cDNA encoding KDRF (KM-102-derived reductase like factor) from the human bone marrow-derived stromal cell line KM-102. Analysis of the sequence of this cDNA revealed it to be the previously reported human thioredoxin reductase cDNA. Human thioredoxin reductase, which was recently isolated from human lung adenocarcinoma NCI-H441 cells as a selenocysteine-containing selenoprotein, and its substrate thioredoxin are thought to be essential for protecting cells from the damage caused by reactive oxygen species. To obtain the selenocysteine-containing recombinant KDRF/thioredoxin reductase, we introduced a secondary structure, which is identical to the selenocysteine insertion signal of Escherichia coli formate dehydrogenase H mRNA, downstream of the TGA in the KDRF/thioredoxin reductase cDNA and expressed it in E. coli. As a result, a significant amount of selenocysteine was incorporated into the C-terminus of the KDRF/thioredoxin reductase protein. The selenocysteine-containing KDRF/thioredoxin reductase showed reducing activities toward human and E. coli thioredoxin, whereas non-selenocysteine-containing KDRF/thioredoxin reductase showed no enzyme activity. Our results suggest that this strategy will be applicable to the production of other mammalian selenocysteine-containing selenoproteins in E. coli.  相似文献   

2.
3.
In contrast to Escherichia coli and yeast thioredoxin reductases, the human placental enzyme contains an additional redox center consisting of a cysteine-selenocysteine pair that precedes the C-terminal glycine residue. This reactive selenocysteine-containing center imbues the enzyme with its unusually wide substrate specificity. For expression of the human gene in E. coli, the sequence corresponding to the SECIS element required for selenocysteine insertion in E. coli formate dehydrogenase H was inserted downstream of the TGA codon in the human thioredoxin reductase gene. Omission of this SECIS element from another construct resulted in termination at UGA. Change of the TGA codon to TGT gave a mutant enzyme form in which selenocysteine was replaced with cysteine. The three gene products were purified using a standard isolation protocol. Binding properties of the three proteins to the affinity resins used for purification and to NADPH were similar. The three proteins occurred as dimers in the native state and exhibited characteristic thiolate-flavin charge transfer spectra upon reduction. With DTNB as substrate, compared to native rat liver thioredoxin reductase, catalytic activities were 16% for the recombinant wild type enzyme, about 5% for the cysteine mutant enzyme, and negligible for the truncated enzyme form.  相似文献   

4.
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.  相似文献   

5.
The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.  相似文献   

6.
MOTIVATION: Incorporation of selenocysteine (Sec) into proteins in response to UGA codons requires a cis-acting RNA structure, Sec insertion sequence (SECIS) element. Whereas SECIS elements in Escherichia coli are well characterized, a bacterial SECIS consensus structure is lacking. RESULTS: We developed a bacterial SECIS consensus model, the key feature of which is a conserved guanosine in a small apical loop of the properly positioned structure. This consensus was used to build a computational tool, bSECISearch, for detection of bacterial SECIS elements and selenoprotein genes in sequence databases. The program identified 96.5% of known selenoprotein genes in completely sequenced bacterial genomes and predicted several new selenoprotein genes. Further analysis revealed that the size of bacterial selenoproteomes varied from 1 to 11 selenoproteins. Formate dehydrogenase was present in most selenoproteomes, often as the only selenoprotein family, whereas the occurrence of other selenoproteins was limited. The availability of the bacterial SECIS consensus and the tool for identification of these structures should help in correct annotation of selenoprotein genes and characterization of bacterial selenoproteomes.  相似文献   

7.
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to consist of at least 40 nucleotides following the UGA codon. Here we determined the nature of the minimal SECIS required for the in vivo UGA-directed selenocysteine incorporation in E.coli . Our study is based on extensive mutational analysis of the fdhF SECIS DNA located in a lac' Z fusion. We found that the whole stem-loop RNA structure of the E.coli fdhF SECIS previously described is not required for the UGA-directed selenocysteine incorporation in vivo . Rather, only its upper stem-loop structure of 17 nucleotides is necessary on the condition that it is located in a proper distance (11 nucleotides) from the UGA codon. Based on these observations, we present a new model for the minimal E.coli SECIS.  相似文献   

8.
The mammalian methionine sulfoxide reductase B (MsrB) has been found to be a selenoprotein which can reduce R form of both free and protein-incorporated methionine sulfoxide to methionine. Together with MsrA, which reduces specifically the S form of methionine sulfoxide, the living cell can repair methionine-damaged proteins and salvage free methionine under oxidative stress conditions. Here, we report about the pivotal role of the selenocysteine residue in the protein putative active site by site-directed mutagenesis directed to the selenocysteine codon. Using the Escherichia coli SECIS (selenocysteine insertion sequence) element, needed for the recognition of the UGA codon as a selenocysteine codon in E. coli, we expressed the seleno-MsrB as a recombinant selenoprotein in E. coli. The recombinant seleno-MsrB has been shown to be much more active than the cysteine mutant, whereas the mutations to alanine and serine rendered the protein inactive. Although the yields of expression of the full-length N-terminus and C-terminus His-tagged seleno-MsrB were only 3% (of the total MsrB expressed), the C-terminus His-tagged protein enabled us to get a pure preparation of the seleno-MsrB. Using both recombinant selenoproteins, the N-terminus His-tagged and the C-terminus His-tagged proteins, we were able to determine the specific activities of the recombinant seleno-MsrB, which were found to be much higher than the cysteine mutant homologue. This finding confirmed our suggestion that the selenocysteine is essential for maintaining high reducing activity of MsrB. In addition, using radioactive selenium we were able to determine the in vivo presence of MsrB as a selenoprotein in mammalian cell cultures.  相似文献   

9.
10.
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3'-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins.  相似文献   

11.
12.
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.  相似文献   

13.
Self WT  Pierce R  Stadtman TC 《IUBMB life》2004,56(8):501-507
The activation and incorporation of selenium into selenocysteine containing selenoproteins has been well established in an Escherichia coli model system but there is little specific information concerning the transport and intracellular trafficking of selenium in biological systems in general. A selenium transport role is a possible function of a novel 42 kDa selenium-binding protein that recently was purified from Methanococcus vannielii. The gene encoding a monomer of this protein (Sbp) has been cloned, sequenced and heterologously expressed in E. coli. The 8.8 kDa gene product contains 81 amino acids. The recombinant Sbp (rSbp) protein was shown to bind selenium from added selenite. The bound selenium appeared predominantly in dimeric and tetrameric forms of the protein. The gene encoding Sbp occurs in an operon that contains a carbonic anhydrase gene and selenocysteine-containing formate dehydrogenase genes, suggesting possible roles in selenium-dependent formate metabolism.  相似文献   

14.
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.  相似文献   

15.
Kim HY  Zhang Y  Lee BC  Kim JR  Gladyshev VN 《Proteins》2009,74(4):1008-1017
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.  相似文献   

16.
17.
Selenium in biology: facts and medical perspectives   总被引:10,自引:0,他引:10  
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.  相似文献   

18.
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.  相似文献   

19.
The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion. The wild-type form of M. maripaludis repressed the synthesis of the S forms of selenoproteins, i.e., the selenium-independent alternative system, in selenium-enriched medium, but the mutant did not. We concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoprotein. Apart from the S forms, several enzymes from the general methanogenic route were affected by selenium supplementation of the wild type or by the selB mutation. Although the growth of M. maripaludis on H(2)/CO(2) is only marginally affected by the selB lesion, the gene is indispensable for growth on formate because M. maripaludis possesses only a selenocysteine-containing formate dehydrogenase.  相似文献   

20.
The amino acid selenocysteine is encoded by UGA, usually a stop codon, thus requiring a specialized machinery to enable its incorporation into selenoproteins. The machinery comprises the tRNASec, a 3′-UTR mRNA stem–loop termed SElenoCysteine Insertion Sequence (SECIS), which is mandatory for recoding UGA as a Sec codon, the SECIS Binding Protein 2 (SBP2), and other proteins. Little is known about the molecular mechanism and, in particular, when, where, and how the SECIS and SBP2 contact the ribosome. Previous work by others used the isolated SECIS RNA to address this question. Here, we developed a novel approach using instead engineered minimal selenoprotein mRNAs containing SECIS elements derivatized with photoreactive groups. By cross-linking experiments in rabbit reticulocyte lysate, new information could be gained about the SBP2 and SECIS contacts with components of the translation machinery at various translation steps. In particular, we found that SBP2 was bound only to the SECIS in 48S pre-initiation and 80S pretranslocation complexes. In the complex where the Sec-tRNASec was accommodated to the A site but transpeptidation was blocked, SBP2 bound the ribosome and possibly the SECIS element as well, and the SECIS had flexible contacts with the 60S ribosomal subunit involving several ribosomal proteins. Altogether, our findings led to broadening our understanding about the unique mechanism of selenocysteine incorporation in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号