首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acid phosphatases of abaxial and adaxial regions in the cotyledons of the Lupinus luteus which possess structurally distinct protein bodies were examined. Acid phosphatase activity was investigated by enzyme assays and by gel electrophoresis and was localized by cytochemical methods in the cotyledons of Lupinus luteus L. during germination and seedling development. Acid phosphatase activity was significantly higher in the adaxial (heterogeneous protein body) region as compared to the abaxial (homogeneous protein body) region of the cotyledon. The pH optimum of acid phosphatase from the abaxial region and from the adaxial region was 4.5 and 5.0, respectively. There were significant differences in substrate specificity and isoenzymic composition of the enzyme between the two regions. Isoenzymic composition changed during the course of germination and seedling development. Acid phosphatase was localized in the matrix of the homogeneous protein bodies and in the globoids of the heterogeneous protein bodies at imbibition. After germination (d 3, d 4, d 7) acid phosphatase was localized primarily in the inner cell walls and intercellular spaces of both regions. These results show that different isoenzymes of acid phosphatase show differential localization and the rate of acid phosphatase activation or synthesis differs in cells from the two regions of the cotyledon.  相似文献   

2.
P. Nezbeda 《Human genetics》1979,46(2):227-229
Summary During a paternity test an unexpected type of red cell acid phosphatase isozyme (ACP1) was found in one family. The mother was of type A and type B was diagnosed in the son. The whole family was then subjected to ACP1 phenotyping and to the enzyme assay. Five members of the family were found to have unexpected types of ACP1 isozymes. The average activity was approx. 50% of normal values. It is presumed that a silent ACP 1 0 allele was found in the family investigated and that the grandfather was its first carrier.  相似文献   

3.
A cytochemical investigation has been made of nucleotide pyrophosphatase activity in dry and germinated seeds of Triticum, and its distribution compared to that of general acid phosphatase reactions seen with naphthol AS-BI phosphate and p-nitrophenylphosphate as substrates. Acid phosphatase activity was present in the cytoplasm and in channels through the walls of the aleurone cells in both dry and germinated seeds. The cytoplasmic activity was even more marked with nucleotide pyrophosphatase which was almost entirely absent from the cell walls. Nucleotide pyrophosphatase was active in all endosperm cells but particularly in some cells adjacent to the aleurone layer. In addition, all cells of the scutellum and embryo were positive for nucleotide pyrophosphatase activity, especially the developing fibres and xylem elements of leaves and coleoptiles, mature leaf xylem and phloem elements, scutellar provascular and vascular tissues and the epidermis of dark grown coleoptiles.Abbreviation GA3 gibberellic acid  相似文献   

4.
Acid phosphatase (EC 3.1.3.2 [EC] ) of Aspergillus niger myceliumwas distributed exclusively in the cell wall and soluble fractions,whereas alkaline phosphatase was distributed in the solubleand particulate fractions but only slightly in the cell wallfraction. Cell wall-bound acid phosphatase was released by fungal-walllytic enzymes such as snail gut juice. Cell wall-bound, released,and soluble acid phosphatases showed very similar enzymaticproperties except that the bound enzyme was more stable to heatand detergents. By DEAE-cellulose chromatography, the releasedacid phosphatase was found to correspond to acid phosphatasesI A, IB and II in the soluble fraction. When phosphate in the medium was consumed, the acid phosphataseactivity of the soluble fraction increased more rapidly thanthat of the cell wall fraction. When phosphate was added tothe derepressed culture, the acid phosphatase activity of thesoluble fraction decreased after a short lag period, while thatof the cell wall fraction continued to increase. When labeledamino acid was added to the derepressed culture, it was incorporatedinto the soluble acid phosphatase without a lag period, whileit was incorporated into the cell wall phosphatase after a lagperiod. From these observations, acid phosphatase was consideredto be synthesized first as the soluble form and then integratedinto the cell wall. 1 The present experiments were carried out, for the most part,at the Institute of Applied Microbiology of the University ofTokyo. (Received January 19, 1976; )  相似文献   

5.
Acid phosphatase activity in human glioma cells (138 MG) and mouse neuroblastoma cells (C 1300) was associated with structures accumulating neutral red and acridine orange. Only neuroblastoma cells gave a significant positive histochemical reaction for alkaline phosphatase. Glioma and neuroblastoma cell homogenates exhibited maximal phosphatase activity at pH 5 as measured by spectrophotometer. The specific activity; μmoles phosphate released per hour/mg protein was 1.1 in glioma and 0.9 in neuroblastoma. At pH 8, glioma cells lacked activity whereas neuroblastoma cells showed another maximum. The acid phosphatase activity of both cell types was strongly inhibited by CuCl2 (0.3 mM) and NaF (10 mM) and moderately by -tartaric acid (10 mM). cGMP (1 mM) stimulated the phosphatase activity of both cell lines. db-cAMP, in serum-free medium, induced characteristic morphological changes of the cells studied. This process was unaffected by CuCl2, c-GMP and -tartaric acid. db-cAMP (1 mM) inhibited proliferation in both glioma and neuroblastoma cells during a 48 h incubation in serum-containing medium. This growth inhibition was associated with an increase in acid phosphatase activity of the glioma but not of the neuroblastoma cells.  相似文献   

6.
We developed a method using nitrocellulose membranes and image analysis to localise and quantify acid phosphatase activity in the rhizosphere of two plant species, one with cluster roots (Dryandra sessilis (Knight) Domin) and another with ectomycorrhizal roots (Pinus taeda L.). Membranes were placed in contact with roots and then treated with a solution of x, α-naphthyl phosphate and Fast Red TR. Acid phosphatase activity was visualised as a red imprint on the membrane. We quantified acid phosphatase activity by image analysis of scanned imprints. The method was used to estimate the spatial distribution of acid phosphatase activity within particular root classes (lateral roots, mycorrhizal roots, root clusters). Over 95% of the acid phosphatase activity of the root system of D. sessilis was associated with cluster roots, and between 20 and 32% of the root surface active. About 26 % of the acid phosphatase activity of the root system of P. taeda was associated with mycorrhizal roots and unsuberised white root tips and less than 10% of the root surface was active, irrespective of root type. This non-destructive method can be used for rapid, semi-quantitative assessment of acid phosphatase activity in the laboratory and in situ. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
《Plant science》1986,44(1):1-5
Two acid phosphatases have been found in crude extracts of seeds, coleoptiles and leaves of various grass species by means of crossed immunoelectrophoresis.The enzymes, cross-reacting with antibodies raised against proteins of Poa pratensis seeds differ in their binding to con A. The use of affinity chromatography on con A-Sepharose has separated the acid phosphatases into two fractions: the non-binding (acid phosphatase A) and the con A-binding (acid phosphatase B). The con A-binding acid phosphatase B from all tissues was further purified by gel filtration on Biogel P-100 and hydrophobic interaction chromatography on phenyl-Sepharose. Two isoenzymes: acid phosphatase B1 and B2 were obtained. The isoenzymes are glycoproteins containing D-mannose or D-glucose in their carbohydrate moiety. They retained the enzyme activity after binding in macromolecular complex with antibodies or con A. The purified acid phosphatases from all tissues cross-react with monospecific antibodies raised against P. pratensis seeds acid phosphatase B1 indicating the antigenic relationship between the enzymes of various grass species.  相似文献   

8.
Evidence of acid phosphatase in the cytoplasm as a distinct entity   总被引:1,自引:0,他引:1  
A study of subcellular acid phosphatase distribution in mammalian tissues shows that isozymes with specific functions are compartmentalized in the cells. The enzyme may be generalized into two types: type A and type B. They are shown by several means to be distinct entities. Type A is confined to the cytoplasm and is inhibited by Cu2+, HCHO, and the coupling agents (for enzyme staining) fast blue RR salt and fast Garnet GBC salt (newly discovered inhibitors), but is insensitive to fluoride and L-(+)-tartrate. Type B is localized in the organelles, presumably lysosomes, in both soluble form and membrane-bound form, with inhibitor sensitivity exactly opposite to that of type A enzyme. Types A and B consist of different sets of isozymes, with sensitivities to inhibitors resembling those observed with the crude extracts of subcellular fractions. Acid phosphatase that exhibits a phosphoryl transfer property was identified as type A enzyme. Type A enzyme has a slightly higher optimal pH and is inhibited by alloxan, whereas for type B, the addition of alloxan broadens the optimal pH to a higher range and elevates the activity of pH 7.4 from negligible to about 30-40% of that obtained under optimal conditions. The alloxan-mediated elevation of type B enzyme activity to this level at the physiological pH may be of considerable significance. Type B enzyme has a high affinity for metabolic intermediates and nucleotides, while type A has an extremely low affinity for these substrates. Cytoplasmic acid phosphatase (type A) is a significant enzyme population and its activity is not related to the lysosome density in the cells. Type A enzyme in the cytoplasm is thus shown to be an entity distinctly different from type B enzyme in the lysosomes. These findings suggest that the physiological functions of type A acid phosphatase, such as metabolic regulatory processes, merit further studies because of the phosphoryl transfer activity and cytoplasmic localization of the enzyme.  相似文献   

9.
The localization of acid phosphatase (EC 3.1.3.2) in aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) grains was studied. Phosphatase (EC 3.1.3.26) activity, assayed with phytic acid as the substrate, is present in the dry grain at low leveis and increases during incubation in H2O at 25°C for three days. When aleurone layers are isolated from imbibed grain and incubated for 18 h in buffer with or without 50 μM gibberellic acid (GA3), the level of extractable phosphatase activity increases two- to threefold, and phosphatase is released into the medium. GA, promotes the release of phosphatase activity: aleurone layers incubated in GA, release twice as much phosphatase as layers incubated in buffer. Nine isoenzymes of phosphatase are found in aleurone layers of barley by non-denaturing polyacrvlamide gel electropho-resis. Six of these forms, isoenzymes 1,2,3,5,6 and 8, can be extracted from dry tissue, and after three days of imbibition in H2O an additional isoenzyme, isoenzyme 9, is found in aleurone extracts. When isolated aleurone layers are incubated for a further 22 h in buffer with or without GA3, isoenzyme 7 is found and yet another form, isoenzyme 4, is found in layers incubated in GA3. Eight isoenzymes are released from aleurone layers into the incubation medium. Isoenzymes 5 and 6 are released in buffer both with and without GA3, even when cycloheximide is present; cycloheximide inhibits the release of the other isoenzymes. Isoenzymes 1-4, 7 and 8, on the other hand, are secreted into the incubation medium only when GA3, is present. Isoenzyme 9 is not released into the incubation medium. Acid phosphatase activity was localized in aleurone tissue using cytochemical, cell fractionation, and enzymatic methods. Cytochemical localization of ATPase (EC 3.6.1.8) in aleurone tissue showed the presence of enzyme activity in cell wall, protein bodies, endoplasmic reticulum, Golgi apparatus, and mitochondria. Analysis of organelle fractions isolated by density gradient centrifugation showed that the activity of acid phosphatase isoenzymes 1, 2 and 3 was prominently associated with the phytin globoid of protein bodies, and analysis of the activity released from the cell wall by enzymatic digestion showed that it was almost exclusively isoenzymes 5 and 6.  相似文献   

10.
This study investigates the distribution of carboxylates and acid phosphatases as well as the depletion of different phosphorus (P) fractions in the rhizosphere of three legume crop species and a cereal, grown in a soil with two different levels of residual P. White lupin (Lupinus albus L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.) and spring wheat (Triticum aestivum L.) were grown in small sand-filled PVC tubes to create a dense root mat against a 38-μm mesh nylon cloth at the bottom, where it was in contact with the soil of interest contained in another tube. The soil had either not been fertilised (P0) or fertilised with 15 (P15) kg P ha−1 in previous years. The mesh size did not allow roots to grow into the soil, but penetration of root hairs and diffusion of nutrients and root exudates was possible, and a rhizosphere was established. At harvest, thin (1 mm) slices of this rhizosphere soil were cut, down to a 10-mm distance from the mesh surface. The rhizosphere of white lupin, particularly in the P0 treatment, contained citrate, mostly in the first 3 mm, with concentrations decreasing with distance from the root. Acid phosphatase activity was enhanced in the rhizosphere of all species, as compared with bulk soil, up to a distance of 4 mm. Phosphatase activity was highest in the rhizosphere of white lupin, followed by faba bean, field pea and wheat. Both citrate concentrations and phosphatase activities were higher in P0 compared with P15. The depletion of both inorganic (Pi) and organic (Po) phosphorus fractions was greatest at the root surface, and decreased gradually with distance from the root. The soil P fractions that were most depleted as a result of root activity were the bicarbonate-extractable (0.5 M) and sodium hydroxide-extractable (0.1 M) pools, irrespective of plant species. This study suggests that differences among the studied species in use of different P pools and in the width of the rhizosphere are relatively small.  相似文献   

11.
Juma  N. G.  Tabatabai  M. A. 《Plant and Soil》1988,107(1):39-47
Studies with sterile root materials showed that the optimum pH values of phosphatase activity in three varieties of each of corn (Zea mays L.) and soybean (Glycine max. L.) were 4 and 5, respectively. The activity on either side of the optimum pH fell sharply, and there was no activity at pH 9. Thus, these roots contain acid but no alkaline phosphatase activity. Acid phosphatase activity was not uniformly distributed in roots and root hairs. Studies with 20 metals showed that their effectiveness in inhibiting acid phosphatase activity of roots varied with the type of plant used. When the metals were compared at 250 μM (1.25 μmole. 5 mg−1 of homogenized roots), the inhibition of acid phosphatase of corn and soybean roots showed that Ag(I), Fe(III), Se(IV), V(IV), As(V) and Mo(VI) were the most effective inhibitors of this enzyme in corn roots, with percentage inhibition ≥30%. In addition to these metals, Sn(II), Hg(II), and W(VI) inhibited acid phosphatase in soybean roots by >30%. Other metals and one non-metallic element that inhibited acid phosphatase activity in corn and soybean roots were: Cu(I), Cu(II), Cd(II), Ni(II), Fe(II), Pb(II), Ba(II), Co(II), Mn(II), Zn(II), B(III), As(III), Cr(III), and Al(III); their degrees of effectiveness varied with type of roots used. Generally, the inhibitory effect of the metals was much less when their concentration was decreased by 10-fold. In addition to the effect of these elements, phosphate ion inhibited acid phosphatase activity of corn and soybean roots. Related anions such as NO 2 , NO 3 , Cl, and SO 4 2− were not inhibitory.  相似文献   

12.
Acid phosphatase, alkaline phosphatase, and lactic dehydrogenase activities have been compared in normal human diploid cell strains and in SV40-transformed heteroploid cell lines derived from them. A higher level of acid phosphatase activity was observed in diploid cultures derived from adult lung than in cultures derived from fetal lung of similar passage levels. The alkaline phosphatase activity of normal diploid fibroblasts was significantly higher than that of SV40-transformed cell lines derived from them. Generally, the lactic dehydrogenase activities of all these cell cultures were similar. Human diploid cells in culture “age,” in the sense that their ability to proliferate decreases with time during serial subcultivation. Evaluation of the activities of these three enzymes during the “aging” process showed that, although alkaline phosphatase and lactic dehydrogenase activities were similar in “young” and “senescent” cells, acid phosphatase showed a small but significant increase in the senescent cells.  相似文献   

13.
Lysosome formation was induced in cells of the renal medulla by feeding rats on a K+-deficient diet. The role of the endoplasmic reticulum in the production of acid phosphatase, a typical lysosomal enzyme, was examined. Lysosomal and microsomal fractions were prepared for study by differential centrifugation of homogenates of renal papilla and inner stripe of red medulla. Acid phosphatase activity in the microsomal fraction was distinguished from the activity in the lysosomal fraction in normal tissue by differences in pH optima, tartrate inhibition, distribution of multiple forms after polyacrylamide-gel electrophoresis and detergent-sensitivity. During progressive K+ depletion, acid phosphatase activity in both microsomal and lysosomal fractions of the tissue increased 3-fold. In the lysosomes, K+ depletion was associated with the appearance of a new band of acid phosphatase. The neuraminidase-sensitivity of this band on polyacrylamide-gel electrophoresis indicated that the enzyme protein had been modified by the addition of sialic acid residues. K+ depletion also altered the lysosomal enzyme so that thiol compounds were able to stimulate its activity.  相似文献   

14.
Summary Acid phosphatase in S. cerevisiae exists as an enzymatically active, cell wall associated form and as an enzymatically inactive, probably membrane-bound form (Schweingruber and Schweingruber, in press). Orthophosphate dependent and independent regulation determines the level of acid phosphatase activity. To deduce the regulation mechanisms we purified and quantified active and inactive acid phosphatase from cells grown under different physiological conditions and displaying variable levels of enzyme activity. Orthophosphate dependent regulation does not include significant changes in the amount of total (active and inactive) acid phosphatase protein synthesized. Under the experimental conditions chosen increased activity is achieved by preferential synthesis of the active form and by increasing the specific activity of the active enzyme. Orthophosphate independent regulation seems to occur by similar mechanisms.  相似文献   

15.
Phosphorus availability is often limiting for plant growth. However, little is known of the pathways and mechanisms that regulate phosphorus (P) uptake and distribution in plants. We have developed a screen based on the induction of secreted root acid phosphatase activity by low‐P stress to identify mutants of Arabidopsis thaliana with defects in P metabolism. Acid phosphatase activity was detected visually in the roots of A. thaliana seedlings grown in vitro on low‐P medium, using the chromogenic substrate, 5‐bromo‐4‐chloro‐3‐indolyl‐phosphate (BCIP). In low‐P stress conditions the roots of wild‐type plants stained blue, as the induced root acid phosphatase cleaved BCIP to release the coloured product. Potential mutants were identified as having white, or pale blue, roots under these conditions. Out of approximately 79 000 T‐DNA mutagenised seedlings screened, two mutants with reduced acid phosphatase staining were further characterised. Both exhibited reduced growth and differences in their P contents when compared to wild‐type A. thaliana. The mutant with the most severe phenotype, pho3, accumulated high levels of anthocyanins and starch in a distinctive visual pattern within the leaves. The phenotypes of these mutants are distinct from two previously identified phosphorus mutants (phol and pho2) and from an acid phosphatase deficient mutant (pupl) of A. thaliana. This suggested that the screening method was robust and might lead to the identification of further mutants with the potential for increasing our understanding of P nutrition.  相似文献   

16.
Acid phosphatase activity has been studied in the ameba Mayorella palestinensis. Optimum activity of the enzyme was found to be at a pH of 3.2. The enzyme is inhibited by fluoride ion, but is not sensitive to Mg++. The activity was found to be correlated with age of culture. Two maxima have been obtained, one from cultures in the logarithmic phase, and the other during the period of maximal cell encystation. These results suggest that acid phosphatase play an important role in cell metabolism during growth and differentiation processes of this ameba.  相似文献   

17.
Blood samples ofMacaca irus imported from Cambodia and the Philippines were examined by starch gel electrophoresis for red cell acid phosphatase, phosphoglucomutase, and hemoglobin variations.Two different types, each showing two and three zones with acid phosphatase activity, were observed in 172 cynomolgus monkeys. Variant (less common) type was detected in only eight of 113 in the Cambodian group.Individual differences in the distribution of phosphoglucomutase isoenzymes were also found in the monkey samples. Five different types were distinguished in 145 samples examined, but no possible explanation for genetic control can be given for the observed patterns.In addition to the usual hemoglobin found in all the hemolysates, fastmigrating hemoglobin components were demonstrated in 36% of 172 samples. A striking difference in the distribution of the hemoglobin types was found between the Cambodian and the Philippine groups.The obtained results probably indicate the existence of strong geographical effects on protein polymorphisms in cynomolgus monkey.  相似文献   

18.
An acid phosphatase from a heavy-metal-accumulating strain of a Citrobacter sp. was resolved into two forms on the basis of their nonbinding (phosphatase I) or binding (phosphatase II) behaviour on the cation-exchange resin SP-Sephadex C50. Both holoenzymes had a molecular mass of 103–108 kDa as determined by Superose Q-6 column chromatography in the presence of 150 mM KCl and a subunit molecular mass of 27 kDa as determined by SDS-PAGE; the enzyme was tetrameric. Both enzymes had a pI ≈ 9.0 and were immunologically cross-reactive. There were minor differences in amino acid composition and in peptide maps following tryptic digest. The pH optimum for phosphatases I and II was 5.5 and 6.25, respectively; phosphatase II alone retained activity at pH values up to 9.0. Phosphatase I was more resistant to mechanical shear, γ-irradiation, high temperature, and toxins (F and formaldehyde). Glycerol increased the thermostability of both enzymes, particularly the more thermosensitive phosphatase II. Phosphatase II had a lower K m and a lower V max for glycerol 2-phosphate hydrolysis. The production of enzyme isoforms is a phenomenon similar to that described previously for the alkaline phosphatase of Escherichia coli, where the isoforms relate to precursive and final processed forms of the enzyme. Acid phosphatase is physiologically distinct, with a role that is still obscure but that may relate to cellular stress responses. Revision received: 22 August 1997 / Accepted: 16 September 1997  相似文献   

19.
Phosphomonoesterase activity was determined for a 115,000g pellet and soluble fractions resulting from a subcellular fractioning of a homogenate of larval Boophilus microplus. Both fractions showed maximum phosphatase activity at pH 5.5 and 10. Acid phosphatase (EC 3.1.3.2) activity was found to be greatest in the soluble fraction. When the reaction rate was plotted against homogenate concentration, the soluble acid phosphatase deviated from the linear relationship. For both fractions different thermostability patterns were obtained, inactlvation beginning for the alkaline phosphatase (EC 3.1.3.1) at 45–55 C. When the effect of substrate concentration on activity was studied, deviations from the typical hyperbolic behavior were observed. Homogenization of larvae with 5 mm EDTA buffer failed to yield a low-speed pellet with high alkaline phosphatase activity, as it is expected if absorptive structures sediment. Moreover, total alkaline phosphatase activity recovered by this method is significantly lower than activity recovered when homogenization is carried out without EDTA. Alternately, homogenization with 10 mM Tris buffer and 0.25 M sucrose gave 27,000g and 115,000g fractions with high phosphatase activity when fractioned by centrifugation. Alkaline treatment of the 115,000g fraction with 10 mM Tris buffer, pH 7.8, failed to separate endoplasmic reticulum contaminants without loss of phosphatase activity. When the 115,000g fraction was centrifuged in a sucrose density gradient, two activity peaks, coincident for both acid and alkaline phosphatases, were obtained. Antigenic analysis showed the existence of similar antigenic determinants in both peaks “immunologically” presented in different ways.  相似文献   

20.
Acid and alkaline phosphatases have been isolated from Peridinium cinctum f. westii (Dinophyceae) during an algal bloom in Lake Kinneret. Acid phosphatase activity was fairly constant over the entire period of the bloom, although fluctuations in activity appeared to correlate with the chlorophyll content of the cells. Histochemical studies showed that the enzyme was localized inside the cell. Alkaline phosphatase activity was very low until May, a month after the peak of the bloom, when it increased sharply. Polyacrylamide gel electrophoresis revealed one or two bands of alkaline phosphatase that increased in intensity as the bloom progressed. However, the highest activity of the enzyme (in the last sample collected) corresponded to a new, very intense band on the gels. Similarly to acid phosphatase, alkaline phosphatase was also localized inside the cell. The appearance of alkaline phosphatase is probably related to the available phosphate concentration in the lake, although the influence of other factors that may contribute to the induction of the enzyme cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号