首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP and cyclic GMP phosphodiesterase activities (3' : 5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17) were demonstrated in the isolated intima, media, and adventitia of rabbit aorta. The activity for cyclic AMP hydrolysis in the intima was 2.7-fold higher than that for cyclic GMP hydrolysis. The activity for cyclic AMP hydrolysis in the media was approximately equal to that for cyclic GMP hydrolysis, but in the adventitia, cyclic GMP hydrolytic activity was 2.1-fold higher than cyclic AMP hydrolytic activity. Distribution of the activator of the phosphodiesterase was studied in the three layers. Each layer contained the activator. The activator was predominantly localized in the smooth muscle layer (the media). The effect of the activator and Ca2+ on the media cyclic AMP and cyclic GMP phosphodiesterase was also briefly studied. The activity of the cyclic GMP phosphodiesterase was stimulated by micromolar concentration of Ca2+ in the presence of the activator. However, the activity of the cyclic AMP phosphodiesterase was not significantly stimulated by Ca2+ up to 100 muM in the presence of the activator. Above 90% of cyclic nucleotide phosphodiesterase activity in the whole aorta was found to be derived from the media. A major portion (60-70%) of the media enzyme was found in 105 000 times g supernatant. Cyclic AMP phosphodiesterase in the supernatant was partially purified through Sepharose 6B column chromatography and partially separated from cyclic GMP phosphodiesterase. Using a partially purified preparation from the 105 000 times g supernatant the main kinetic parameters were specified as follows: 1) The pH optimum was found to be about 9.0 using Tris-maleate buffer. The maximum stimulation of the enzyme by Mg2+ was achieved at 4mM of MgC12. 2) High concentration of cyclic GMP (0.1 mM) inhibited noncompetitively the enzyme activity, and the activity was not stimulated at any tested concentration of cyclic GMP. 3) Activity-substrate concentration relationship revealed a high affinity (Km equals 1.0 muM) and low affinity (Km equals 45 muM) for cyclic AMP. The homogenate and 105 000 times g supernatant of the media also showed non-linear kinetics similar to the Sepharose 6B preparation and their apparent Km values for cyclic AMP hydrolysis were 1.2 muM and 36-40 muM and an enzyme extracted by sonication from 105 000 times g precipitate also exhibited non-linear kinetics (Km equals 5.1 muM and 70 muM). 4) Papaverine exhibited much stronger inhibition on the aorta cyclic AMP phosphodiesterase (50% inhibition of the intima enzyme, I5 o at 0.62 muM, I5 o of the media at 0.62 muM and I5 o of the adventitia at 1.0 muM) than on the brain (I5 o at 8.5 muM) and serum (I5 o at 20 muM) cyclic AMP phosphodiesterase, while theophylline inhibited these enzymes similarly. However, cyclic GMP phosphodiesterases in all tissues examined were inhibited similarly, not only by theophylline but also by papaverine.  相似文献   

2.
The effect of the endogenous protein activator on the kinetic characteristics of a highly purified, activator-deficient rat brain phosphodiesterase (EC 3.1.4.-) of a highly purified, activator-deficient rat brain phosphodiesterase (EC 3.1.4-) was studied. This enzyme preparation has only a high Km for cyclic AMP and a low Km for cyclic GMP. In the presence of 20 muM Ca2+, saturating concentrations of the activator decreased the Km of this enzyme for cyclic AMP from 350 muM to about 80 muM, without changing the V. The phosphodiesterase activator did not change the Km of phosphodiesterase for cyclic GMP; however, amoderate increase of V was seen. The activator lacks species specificity; the activator isolated from the bullfrog sympathetic chain produced the same qualitative and comparable quantitative changes in the kinetic properties of the purified rat brain phosphodiesterase. Cyclic GMP is a potent competitive inhibitor of the phosphodiesterase activation by the activator (Ki=1.8 muM), using cyclic AMP as a substrate. Cyclic AMP inhibits slightly the hydrolysis of cyclic GMP by phosphodiesterase in the presence of activator (Ki=155 muM) only.  相似文献   

3.
The brief rise in the cellular cyclic AMP content which occurs late in the prereplicative phases of rat hepatocytes in vivo and T51B rat liver epitheloid cells in vitro seems to be necessary for the initiation of DNA synthesis. Thus, the extracellular calcium-deprivation in T51B rat liver cells in culture which induces a late G-1 block is rapidly reversible (cells surge into S phase within one hour) either by creating a cyclic AMP surge by the addition of calcium or 3-isobutyl-1-methyl xanthine (a cyclic 3',5'-nucleotide phosphodiesterase inhibitor) or by the exogenous addition of low concentrations of cyclic AMP itself (i.e., 10(-8)-10(-5) M). On the other hand, prevention of the calcium-induced cyclic AMP surge by imidazole (a cyclic 3',5'-nucleotide phosphodiesterase activator) blocked the initiation of DNA synthesis by the calcium-deprived T51B cells.  相似文献   

4.
To investigate the role of guanosine 3':5'-monophosphate (cyclic GMP) in cultured cells we have measured guanylate cyclase and cyclic GMP phosphodiesterase activities and cyclic GMP levels in normal and transformed fibroblastic cells. Guanylate cyclase activity is found almost exclusively in the particulate fraction of normal rat kidney (NRK) and BALB 3T3 cells. Enzyme activity is stimulated 3- to 10-fold by treatment with the detergent Lubrol PX. However, enhancement of guanylate cyclase by fibroblast growth factor could not be demonstrated under a variety of assay conditions. In both NRK and BALB 3T3 cells guanylate cyclase activity is low during logarithmic growth and increases as the cells crowd together and growth slows. Guanylate cyclase activity is undetectable in homogenates of NRK cells transformed by the Kirsten sarcoma virus (KNRK cells) either in the presence or absence of Lubrol PX. Guanylate cyclase activity is also greatly decreased in NRK cells transformed by Moloney, Schmidt-Ruppin, or Harvey viruses. BALB 3T3 cells transformed by RNA viruses (Kirsten, Harvey, or Moloney), by a DNA virus (SV40), by methylcholanthrene, or spontaneously, all have diminished but readily detectable guanylate cyclase activity. Cyclic GMP phosphodiesterase activity is found predominately in the soluble fraction of NRK cells. This activity increases slightly as NRK cells enter the stationary growth phase. Cyclic GMP phosphodiesterase activity is undetectable in two clones of KNRK cells under a variety of assay conditions, and is decreased relative to the level present in NRK cells in a third KNRK clone. However, both Moloney- and Schmidt-Ruppin-transformed NRK cells have a phosphodiesterase activity similar to that found in NRK cells. Boiled supernatant from both NRK and KNRK cells is observed to appreciably enhance the activity of activator-deficient phosphodiesterase from bovine heart. This result indicates that the absence of cyclic GMP phosphodiesterase activity in KNRK cells is not due to a loss of the phosphodiesterase activator. The intracellular concentration of cyclic GMP is found to be very low in transformed NRK cells when compared to levels measured in confluent NRK cells. The low levels of cyclic GMP in transformed NRK cells reflect the greatly decreased guanylate cyclase activity observed in these cells. These results do not appear to support the suggestion that cyclic GMP promotes the growth of fibroblastic cells.  相似文献   

5.
Phosphodiesterase activator protein and troponin-C have been purified from rat testis and rabbit skeletal muscle, respectively. The two proteins appear to be structurally distinct since the activator protein migrates faster than troponin-C on sodium dodecyl sulfate-polyacrylamide gels. Each of the calcium-binding proteins will, however, substitute for the other in their respective biological systems. Testis activator protein forms a complex with rabbit muscle troponin subunits TnI and TnT soluble in low salt. This hybrid complex (AIT) can regulate rabbit skeletal muscle actomyosin ATPase activity. AIT regulation, although influenced by free Aa2+ levels, is distinct from that of native troponin. Likewise, muscle troponin-C can substitute for activator protein in the stimulation of cyclic nucleotide phosphodiesterase. Troponin-C will fully stimulate phosphodiesterase although its affinity is 600-fold lower than that of activator protein. Ca2+ regulation studies demonstrate that both proteins require micormolar levels of free Ca2+ to induce phosphodiesterase activation. Activator protein requires 1.2 x 10(6) M and troponin-C, 1.9 X 10(6) M free Ca2+ for half-maximal stimulation of phosphodiesterase. The biological cross-reactivity of these proteins supports the sequence homology recently reported by Watterson et al. (Watterson, D.M., Harrelson, W.G., Keller, P.M., Sharief, F., and Vanaman, T.C. (1976) J.Biol. Chem. 251, 4501-4513). In addition, this preliminary study suggests that this nonmuscle troponin-C-like protein potentially may function in other Ca2+-regulated cellular events in addition to its moculation of cyclic nucleotide levels.  相似文献   

6.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

7.
Most (85% or more) of the cyclic nucleotide phosphodiesterase (3' :5' -cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) activity of pig coronary arteries was found in the 40 000 times g supernatant fraction of homogenates of the intima plus media layer. Chromatography of the soluble fraction of this layer on DEAE-cellulose resolved two phosphodiesterase activities and a heat stable, non-dializable activator. Peak I activity had apparent Km values of 2-4 muM for cyclic GMP and 40-100 muM for cyclic AMP. Peak II activity was relatively specific for cyclic AMP and exhibited apparent negatively cooperative behavior. Peak I but not peak II activity could be stimulated 3-8-fold by the addition of the boiled activator fraction or a boiled crude supernatant fraction. Cyclic AMP hydrolysis by peak I or peak II was more rapid in the presence of Mn-2+ than Mg-2+, but the latter promoted hydrolysis of cyclic GMP by peak I more effectively than did Mn-2+ in the presence of activator. In the absence of added metals, ethylene bis(oxyethylenenitriol)tetra-acetic acid (EGTA) and EDTA both inhibited hydrolysis of cyclic AMP and cyclic GMP by phosphodiesterase activities in the supernatant fraction and in peak I, but EDTA produced more complete inhibition at lower concentrations than did EGTA. Imidazole (1 muM to 10 mM) had virtually no effect on the hydrolysis of cyclic AMP or cyclic GMP catalyzed by either of the two separated peaks or by total phosphodiesterase activities in crude supernatant or particulate fractions.  相似文献   

8.
C B Klee  M H Krinks 《Biochemistry》1978,17(1):120-126
The Ca2+-dependent, reversible, interaction of cyclic adenosine 3',5'-monophosphate (cAMP) phosphodiesterase with its activator has been used to purify the enzyme by affinity chromatography. Activator-dependent cAMP phosphodiesterase is only a minor component of the proteins specifically adsorbed in the presence of Ca2+ by the Ca2+-dependent activator protein coupled to Sepharose and subsequently released by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The major protein component can be partially resolved from the enzyme by gel filtration on Sephadex G-200. This protein has been purified to apparent homogeneity and shown to be composed of two polypeptide chains with molecular weights of 61,000 and 15,000 respectively. This protein is, by itself, devoid of phosphodiesterase activity and inhibits the activation of cAMP phosphodiesterase by its activator without affecting the basal activity. Thus, activation of cAMP phosphodiesteriase by the Ca2+-dependent activator protein may be controlled by interactions with yet a third component of the enzyme complex.  相似文献   

9.
A cyclic adenosine 3′ : 5′ — monophosphate phosphodiesterase activator protein has been partially purified from rat heart by a procedure involving ammonium sulfate fractionation and affinity column chromatography with cyclic AMP phosphodiesterase bound to Sepharose 4B. Freezing and thawing of the rat heart was essential for solubilization of the activator protein in the crude homogenate. Activator activity was localized on sarcoplasmic reticulum isolated from fresh heart which could be solubilized with a low yield that resulted in a labile product. Maximal activation of cyclic AMP phosphodiesterase with excess protein activator was 100%.  相似文献   

10.
The subcellular distribution of the endogenous phosphodiesterase activator and its release from membranes by a cyclic AMP-dependent ATP:protein phosphotransferase was studied in fractions and subfractions of rat brain homogenate. These fractions were obtained by differential centrifugation and sucrose density gradient; their identity was ascertained by electron microscopy and specific enzyme markers. In the subcellular particulate fractions, the concentration of activator is highest in the microsomal fraction, followed by the mitochondrial and nuclear fractions. Gradient centrifugation of the main mitochondrial subfraction revealed that activator was concentrated in those fractions containing mainly synaptic membranes. Activator was releasted from membranes by a cyclic AMP-dependent phosphorylation of membrane protein. The release of activator occurred mainly from the mitochondrial subfractions containing synaptic membranes and synaptic vesicles. The data support the view that a release of activator from membranes may be important in normalizing the elevated concentration of cyclic AMP following persistent transsynaptic activation of adenylate cyclase.  相似文献   

11.
DEAE-cellulose chromatography demonstrated that the levels of the individual cyclic nucleotide phosphodiesterase were unchanged in the aorta and heart of the spontaneously hypertensive rat as compared with the normotensive control rat. Three peaks of cyclic nucleotide phosphodiesterase activity were observed in both heart and aorta. Peak I enzyme hydrolyzed predominantly cyclic GMP while peak III enzyme hydrolyzed predominantly cyclic AMP. Peak II enzyme was less specific but hydrolyzed more cyclic GMP than cyclic AMP The levels of phosphodiesterase activator in aorta and the responsiveness of peaks I and II from aorta and heart to activator were unchanged in the hypertensive rat. Therefore the decrease in cyclic AMP levels observed by others in aorta and heart of the spontaneously hypertensive rat were probably not due to altered phosphodiesterase activity.  相似文献   

12.
Cyclic GMP phosphodiesterases from 100 00 × g rat liver supernatant were partially resolved by chromatography on DEAE-cellulose. Multiple forms of cyclic GMP phosphodiesterase(s) that were activated to different degrees by calcium plus a low molecular weight protein from rat liver and bovine brain supernantants, or by limited exposure to chymotrypsin, were identified. The cyclic GMP phosphodiesterase in some column fractions was activated over 10-fold by calcium plus activator or chymotrypsin. Activation by chymotrypsin was dependent both on the time of incubation with protease and its concentration. Prolonged exposure to chymotrypsin resulted in a decrease in s20,w by sucrose density gradient centrifugation. The chymotrypsin-treated enzyme was no longer activated by exposure to calcium plus activator. The calcium- and protein activator-stimulated enzyme was inactivated by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA). Exposure of this activated enzyme to chymotrypsin did not result in further activation, but the chymotrypsin-treated enzyme was no longer inhibited by EGTA. The apparently irreversible effects of chymotrypsin and the reversible effects of calcium plus activator on cyclic GMP hydrolysis by the phosphodiesterase over a wide range of cyclic GMP concentrations appeared to be identical.  相似文献   

13.
In previous studies we have shown that the activation of bovine heart cyclic nucleotide phosphodiesterase by purified protein activator is completely dependent on the presence of Ca2+ and that the protein activator Ca2+ complex is probably the true activator for the enzyme (Teo, T.S. and Wang, J.H. (1973) J. Biol. Chem. 248, 5930-5955). More recent studies have led us to believe that the mechanism of the Ca2+ activation of phosphodiesterase resembles that of the Ca2+ activation of muscle contraction and that the protein activator may play a role similar to troponin. In the present study we show that the protein activator resembles rabbit muscle troponin C in amino acid composition, molecular weight, isoelectric point, and ultraviolet absorption spectrum. Preliminary structural studies also indicate that these two proteins may have evolved from a common ancestral protein through gene duplication. This argument is strengthened by the finding that the tryptic peptide map of the bovine heart protein activator is indistinguishable from that of the bovine brain phosphodiesterase activator protein for which preliminary sequence information also suggests homology to troponin C (Watterson, D.M., Harrelson, W.G., Jr., Keller, P.M., Sharief, F., and Vanaman, T.C. (1976) J. Biol. Chem. 251, 4501-4513).  相似文献   

14.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

15.
The activity of cyclic AMP phosphodiesterase (3':5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) in 105 000 X g supernatant fraction from frozen-thawed rat liver was 2.5 times higher than the corresponding preparation from fresh liver. This increased activity of frozen liver enzyme was accompanied by a decreased sensitivity of the enzyme to known activators such as alpha-tocopheryl phosphate and trypsin. Neither membrane-bound cyclic AMP phosphodiesterase, nor supernatant cyclic GMP phosphodiesterase increased in frozen liver preparation. It is unlikely that the activator protein of phosphodiesterase participated in the observed change of enzyme activity. Among rat tissues so far tested, the increased level of cyclic AMP phosphodiesterase was noted only in tissues rich in lysosome content. In the recombination experiment where phosphodiesterase from fresh liver was incubated with lysosomal fraction, stimulation of the enzyme activity was observed with a concomitant loss of sensitivity to above-mentioned activators. Since the stimulation by lysosomal fraction was effectively inhibited by cathepsin B1 inhibitors, leupeptin and antipain, it was deduced cathepsin-B1 (EC 3.4.12.3) type protease(s) was the main causative of activating the cyclic AMP phosphodiesterase. The freezing-thawing process of rat liver made the lysosomal membrane more permeable, and hence lysosomal proteases were released into soluble fraction during phosphodiesterase preparation. These results provide a warning not to use frozen liver for phosphodiesterase preparation, otherwise altered properties of the enzymes will be seen.  相似文献   

16.
Cyclic AMP and cyclic GMP phosphodiesterase activities (3',5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17) were investigated in the human thyroid gland from patients with hyperthyroidism. Low substrate concentration (0.4 muM) was used. About 60% of the cyclic-AMP and 80% of the cyclic-GMP hydrolytic activities in the homogenate were obtained in the soluble fraction (105 000 X g supernatant). The thyroid gland contains two forms of cyclic-AMP phosphodiesterase, one with a Km of 1.3-10(-5) M and the second with a Km of 2-10(-6) M. Cyclic-AMP and cyclic-GMP phosphodiesterase were purified by gel filtration on a Sepharose-6B column. Cyclic-AMP phosphodiesterase activities were found in a broad area corresponding to molecular weights ranging from approx. 200 000 to 250 000 and cyclic-GMP phosphodiesterase activity was found in a single area corresponding to a molecular weight of 260 000. Cyclis-AMP phosphodiesterase activities were stimulated by the protein activator which was found in human thyroid and this stimulation was dependent on Ca2+. Stimulation of cyclic-AMP phosphodiesterase by the activator was not significant even in the presence of enough Ca2+. The effect of D,L-triiodothyronine, D,L-thyroxine, L-diiodotyrosine, L-monoiodotyrosine, L-thyronine, L-diiodothyronine, thyrotropin, hydrocortisone, adrenocorticotropin, cyclic-AMP and cyclic-GMP on the phosphodiesterase activities was studied. Cyclic-AMP, cyclic-GMP, D,L-triiosothyronine, D,L-thyroxine, adrenocorticotropin and hydrocortisone where found to inhibit the phophodiesterase. Triiodothyronine and thyroxine inhibited cyclic-AMP phosphodiesterase more effectively than cyclic-GMP phosphodiesterase. Thyroxine was a more potent inhibitor than triiodothyronine. The concentration of cyclic AMP producing a 50% inhibition of cyclic-GMP phosphodiesterase activity was 5-10(-5) M, while the concentration of cyclic GMP producing a 50% inhibition of cyclic-AMP phosphodiesterase was 3-10(-3) M. Both cyclic-AMP and cyclic-GMP phosphodiesterase activities in the homogenate of hyperthyroidism, thyroid carcinoma and adenoma were higher than in normal thyroid tissue, when assayed with a low concentration of the substrate (0.4 muM). When a higher concentration (1 mM) of cyclic nucleotides was used as the substrate, cyclic-AMP hydrolytic activity in adenoma tissue was similar to that of normal tissue, while the other activities were higher than normal.  相似文献   

17.
CuCl2 non-competitively inhibited the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent phosphodiesterase from bovine heart in the presence of 5 mM Mg2+, 10 muM Ca2+ and phosphodiesterase activator with Ki values of approximately 2 muM for both substrates. CuCl2 inhibition was also non-competitive with Mg2+, Ca2+ and phosphodiesterase activator. Dialysis demonstrated that CuCl2 inhibition is reversible. Treatment of the enzyme with p-hydroxymercuribenzoate resulted in the loss of enzyme activity, suggesting the presence of sulfhydryl groups essential for enzyme activity. The inhibitory activity of CuCl2 was not additive with that of p-hydroxymercuribenzoate, therefore CuCl2 may inhibit enzyme activity by binding to one or more essential sulfhydryl groups. CuCl2 also inhibited the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase from bovine heart with an I50 value of 18 muM. Several effects of Cu2+ are discussed which have been noted in other studies and might be due, in part, to changes in cyclic nucleotide levels following alterations in phosphodiesterase activity.  相似文献   

18.
The soluble supernatant fraction of bovine heart homogenates may be fractionated on a DEAE cellulose column into two cyclic nucleotide phosphodiesterases (EC 3.1.4.-):PI and PII phosphodiesterases, in the order of emergence from the column. In the presence of free Ca2+, the PI enzyme may be activated several fold by the protein activator which was discovered by Cheung((1971) J. Biol. Chem. 246, 2859-2869). The PII enzyme is refractory to this activator, and is not inhibited by the Ca2+ chelating agent, ethylene glycol bis (beta-aminoethyl ether)-N, N'-tetraacetate (EGTA). The activated activity of PI phosphodiesterase may be further stimulated by imidazole or NH+4, and inhibited by high concentrations of Mg2+. These reagents have no significant effect on either the PII enzyme or the basal activity of PI phosphodiesterase. Although both forms of phosphodiesterase can hydrolyze either cyclic AMP or cyclic GMP, they exhibit different relative affinities towards these two cyclic nucleotides. The PI enzyme appears to have much higher affinities toward cyclic GMP than cyclic AMP. Km values for cyclic AMP and cyclic GMP are respectively 1.7 and 0.33 mM for the non-activated PI phosphodiesterase; and 0.2 and 0.007 mM for the activated enzyme. Each cyclic nucleotide acts as a competitive inhibitor for the other with Ki values similar to the respective Km values. In contrast with PI phosphodiesterase, PII phosphodiesterase exhibits similar affinity toward cyclic AMP and cyclic GMP. The apparent Km values of cyclic AMP and cyclic GMP for the PII enzyme are approx. 0.05 and 0.03 mM, respectively. The kinetic plot with respect to cyclic GMP shows positive cooperativity. Each cyclic nucleotide acts as a non-competitive inhibitor for the other nucleotide. These kinetic properties of PI and PII phosphodiesterase of bovine heart are very similar to those of rat liver cyclic GMP and high Km cyclic AMP phosphodiesterases, respectively (Russel, Terasaki and Appleman, (1973) J. Biol. Chem. 248, 1334).  相似文献   

19.
Two cyclic nucleotide phosphodiesterase activities were separated by ion-exchange chromatography of cytosol from male mouse germ cells. A form eluted at low salt concentration showed high affinity (Km congruent to 2 microM) and low affinity (Km congruent to 20 microM) for cyclic AMP, and high affinity (Km congruent to 3.5 microM) for cyclic GMP. A second form, eluted at high salt concentration, showed high affinity (Km congruent to 5 microM) for cyclic AMP and was similar to a phosphodiesterase activity described in rat germ cells. The present study was performed to characterize the first form, which represents most of the phosphodiesterase activity in mouse germ cells. The enzyme was sensitive to Ca2+ and calmodulin stimulation, which increased its activity 3-4-fold. Calmodulin stimulation depended on direct interaction of the activator with the enzyme, as indicated by the reversible changes in the chromatographic elution pattern in the presence of Ca2+, as well as by the increase in the sedimentation coefficient in the presence of calmodulin. Reciprocal inhibition kinetics between cyclic AMP and cyclic GMP for the calmodulin-dependent form demonstrated a non-competitive inhibition between the two substrates, suggesting the presence of separate catalytic sites. This is in agreement with kinetic parameters and different thermal stabilities of cyclic AMP- and cyclic GMP-hydrolysing activities. Furthermore, the relevant change in s value, depending on the absence or presence of Ca2+ and calmodulin, suggested that the enzyme is composed of subunits, which aggregate in the presence of the activator. A model for catalytic site composition and reciprocal interaction is also proposed.  相似文献   

20.
Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction; the activities were optimal at pH 8.0-9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2+. A kinetic analysis of the properties of the enzymes yielded 2 apparent K(m) values ranging in concentration from 0.5 to 50 micron and from 0.1 to 62 micron for cyclic AMP and GMP, respectively. A Ca2+ -dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. The results suggested that Tetrahymena might contain 2 types of Ca2+ -dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号