首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Radioreceptor assay technology was used to show the presence in the rat of a receptor that binds selenoprotein P, a selenocysteine-containing rat plasma protein. 75Se-labeled selenoprotein P bound to testis, kidney, and liver membranes. The binding was specific in that increasing amounts of partially-fractionated rat plasma specifically displaced the binding of 75Se-labeled selenoprotein P to testis membrane in a competitive manner. 75Se-labeled selenoprotein P binding was saturable in the presence of increasing amounts of testis membranes. The binding of 75Se-labeled selenoprotein P was optimal at about pH 4.2. Several proteins and blood fractions had little or no significant effect on binding of 75Se-labeled selenoprotein P to testis membranes. All plasma sources tested specifically displaced 75Se-labeled selenoprotein P from testis membrane, indicating that selenoprotein P-related proteins may be widespread in nature. The study indicated that selenoprotein P has a receptor and is involved in selenium transport.  相似文献   

2.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the γ-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

3.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

4.
Selenium (Se) can protect endothelial cells (EC) from oxidative damage by altering the expression of selenoproteins with antioxidant function such as cytoplasmic glutathione peroxidase (cyGPX), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and thioredoxin reductase (TR). If the role of Se on EC function is to be studied, it is essential that a model system be chosen which reflects selenoprotein expression in human EC derived from vessels prone to developing atheroma. We have used [75Se]-selenite labelling and selenoenzyme measurements to compare the selenoproteins expressed by cultures of EC isolated from different human vasculature with EC bovine and porcine aorta. Only small differences were observed in selenoprotein expression and activity in EC originating from human coronary artery, human umbilical vein (HUVEC), human umbilical artery and the human EC line EAhy926. The selenoprotein profile in HUVEC was consistent over eight passages and HUVEC isolated from four cords also showed little variability. In contrast, EC isolated from pig and bovine aorta showed marked differences in selenoprotein expression when compared to human cells. This study firmly establishes the suitability and consistency of using HUVEC (and possibly the human cell line EAhy926) as a model to study the effects of Se on EC function in relation to atheroma development in the coronary artery. Bovine or porcine EC appear to be an inappropriate model.  相似文献   

5.
A cell polarity complex consisting of partitioning defective 3 (PAR-3), atypical protein kinase C (aPKC) and PAR-6 has a central role in the development of cell polarity in epithelial cells. In vertebrate epithelial cells, this complex localizes to tight junctions. Here, we provide evidence for the existence of a distinct PAR protein complex in endothelial cells. Both PAR-3 and PAR-6 associate directly with the adherens junction protein vascular endothelial cadherin (VE-cadherin). This association is direct and mediated through non-overlapping domains in VE-cadherin. PAR-3 and PAR-6 are recruited independently to cell-cell contacts. Surprisingly, the VE-cadherin-associated PAR protein complex lacks aPKC. Ectopic expression of VE-cadherin in epithelial cells affects tight junction formation. Our findings suggest that in endothelial cells, another PAR protein complex exists that localizes to adherens junctions and does not promote cellular polarization through aPKC activity. They also point to a direct role of a cadherin in the regulation of cell polarity in vertebrates.  相似文献   

6.
Several recent analytical methods for determination of Se and selenoprotein P have involved high-performance liquid chromatography (HPLC) using heparin-affinity columns coupled to inductively coupled plasma-mass spectrometry (ICP-MS) for Se detection. HPLC-ICP-MS chromatography using tandem HPLC columns with ICP-MS detection was used to detect the major selenium-containing proteins in plasma (glutathione peroxidase, albumin, and selenoprotein P). The efficiency of HPLC separation of plasma selenoprotein P was investigated by analyzing HPLC fractions using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with immunoblot analysis. The HPLC fraction corresponding to selenoprotein P contained 25.1% of total selenoprotein P as measured by immunoblot analysis. The majority (74.9%) of total selenoprotein P found by immunoblot analysis was contained in the early HPLC fractions, consistent with either poor heparin affinity, which was not evident based on the HPLC-ICP-MS technique alone or nonspecific binding of the antibody. Immunoblot analysis of selenoprotein relies on antibodies binding to a selenoprotein P epitope, which might be preserved when selenoprotein P is broken down to release selenocysteine residues. Immunoblot methods overestimate selenoprotein P and are not suitable for determinations of intact selenoprotein P.  相似文献   

7.
Selenium deficiency results in undetectable levels of selenoprotein W (SeW) in muscle but has very little effect upon its content in the brain and thus rat glial cells were studied. Previous work showed that glutathione (GSH) is bound to SeW and this study was undertaken to elucidate its possible antioxidant functions. Full length cDNA of SeW was cloned to inducible LacSwitch expression vector and stably transfected in C6 rat glial cells. After induction, SeW and its mRNA were expressed 22- and 11-fold higher respectively than control. The cDNA coding region of SeW was cloned to the vector in the antisense direction and stably transfected in C6 cells for underexpression of the protein. After induction, SeW expression was reduced to 20% of the control cells. Glutathione peroxidase activity and GSH levels were not significantly different between induced and control cells. There was a greater survival rate of overexpressed than control cells when incubated with 2,2'-Azobis (2-amidinopropane) dihydrochloride (AAPH), suggesting SeW possibly has an antioxidant function.  相似文献   

8.
The ocular surface is always attacked by oxidative stress, and cornea epithelial cells are supposed to have their own recovery system against oxidative stress. Therefore we hypothesized that tears supply key molecules for preventing oxidative stress in cornea. The potential target key molecule we focused is selenoprotein P (SeP). SeP is a carrier of selenium, which is an essential trace element for many animals, for oxidative stress metabolism in the organism, and was extremely expressed in lacrimal gland. An experiment was performed with SeP eye drops in a rat dry eye model, prepared by removing the lacrimal glands. The anticipated improvement in corneal dry eye index and the suppression of oxidative stress markers were observed in SeP eye drop group. Furthermore, the concentration of SeP was significantly higher in dry eye patients compared with normal volunteers. Collectively, we concluded that tear SeP is a key molecule to protect the ocular surface cells against environmental oxidative stress.  相似文献   

9.
硒蛋白P的研究进展   总被引:3,自引:0,他引:3  
微量元素硒 (Se)作为许多具有重要生物功能的硒酶的活性中心 ,不但与机体的免疫应答及抗氧化作用等生理功能密切相关 ,而且能够降低癌症的发生率[1,2 ] 。在流行病学和临床研究中 ,常用血浆或全血中Se浓度作为衡量Se状态的指标 ,而且血浆浓度能比全血浓度更迅速地反映Se状态的变化。在哺乳动物血浆中 ,Se主要结合在 3种蛋白质中 :硒蛋白P、胞外谷胱甘肽过氧化物酶和清蛋白。其中硒蛋白P所含Se大约占血浆中全部Se浓度的 5 0 %。硒蛋白P不同于目前所鉴定的所有其他硒蛋白 ,因为它含有 10~ 12个硒代半胱氨酸 (SeCys)残…  相似文献   

10.
Reactive lipid hydroperoxides formed by lipoxygenases and cyclooxygenases can contribute to disease through cellular oxidative damage. Several selenoproteins have lipid hydroperoxidase activity, including glutathione peroxidase 4, thioredoxin reductase, and selenoprotein P (SelP). SelP is an extracellular glycoprotein that functions both in selenium distribution and has an antioxidant activity. The major objective of this study was to determine if an SelP, at physiological concentrations and in selenium replete media, possessed hydroperoxidase activity directed at lipid hydroperoxides generated from the metabolism of arachidonic acid by 15-lipoxygenase-1 (15-LOX-1). An SelP displayed in vitro lipid hydroperoxidase activity of 15-hydroperoxyeicosatetraenoic acid (15-HpETE), attenuated 15-HpETE oxidation in cellular assays, and in transcellular assay when 15-LOX-1 is metabolically active. These results suggest that an SelP can function as an antioxidant enzyme against reactive lipid intermediates formed during inflammation, but an SelP has modest activity. Nevertheless, this effect may help protect cells against the oxidative damage induced by these lipid metabolites.  相似文献   

11.
Selenoprotein P protects low-density lipoprotein against oxidation   总被引:4,自引:0,他引:4  
Selenoprotein P (SeP) is an extracellular glycoprotein with 8-10 selenocysteines per molecule, containing approximately 50% of total selenium in human serum. An antioxidant function of SeP has been postulated. In the present study, we show that SeP protects low-density lipoproteins (LDL) against oxidation in a cell-free in-vitro system. LDL were isolated from human blood plasma and oxidized with CuCl2, 2,2'-azobis(2-amidinopropane) (AAPH) or peroxynitrite in the presence or absence of SeP, using the formation of conjugated dienes as parameter for lipid peroxidation. SeP delayed the CuCl2- and AAPH-induced LDL oxidation significantly and more efficiently than bovine serum albumin used as control. In contrast, SeP was not capable of inhibiting peroxynitrite-induced LDL oxidation. The protection of LDL against CuCl2- and AAPH-induced oxidation provides evidence for the antioxidant capacity of SeP. Because SeP associates with endothelial membranes, it may act in vivo as a protective factor inhibiting the oxidation of LDL by reactive oxygen species.  相似文献   

12.
CEACAM1 functions as an epithelial tumor suppressor and as an angiogenic growth factor. In the present study, utilizing differentially (serine/threonine or tyrosine) phosphorylated cytoplasmic domains of CEACAM1 and CEACAM3 as bait to isolate associated proteins from granulocyte extracts, we have identified human paxillin as a binding partner of the tyrosine-phosphorylated cytoplasmic CEACAM1 domain. CEACAM1-paxillin complexes were coimmunoprecipitated from extracts of granulocytes, the colonic cell line HT29, and HUVECs. We identified phosphorylated Tyr-488-a residue in the cytoplasmic CEACAM1 domain known to be essential for the tumor suppressive effect-to be necessary for this association. The CEACAM1-paxillin interaction was confirmed using laser scanning confocal microscopy analyses in granulocytes and HT29 cells, where CEACAM1 colocalizes with paxillin at the plasma membrane. In HUVECs a highly polarized expression pattern and colocalization of paxillin and CEACAM1 was observed. These findings support the findings that CEACAM1 is linked to the actin-based cytoskeleton.  相似文献   

13.
14.
Here, we present a protocol for the isolation of endothelial cells (ECs) from tissues. ECs make up a minor population of cells in a tissue, but play a major role in tissue homeostasis, as well as in diverse pathologies. To understand the biology of ECs, characterization of this cell population is highly desirable, but requires the availability of purified cells. For this purpose, tissues are mechanically minced and subsequently digested enzymatically with collagenase and dispase. ECs in the resulting single-cell suspension are labeled with Abs against EC surface antigens and separated from the remainder of the cells and debris by capture with magnetic beads or by high-speed cell sorting. Purified ECs are viable and suitable for characterization of diverse cellular properties. This protocol is optimized for human tissues but can also be adapted for use with other species. Depending on the tissue, the procedure can be completed in approximately 6 h.  相似文献   

15.
16.
The discovery of the green fluorescent protein (GFP) and its use as a marker for proteins in cells revolutionised cell biology. Among its applications are the intracellular localisation of proteins and the investigation of the organisation, regulation and dynamics of the cytoskeleton. GFP itself is considered to be an inert protein, homogeneously distributed within the cytoplasm. Here we investigated the intracellular distribution of GFP in an amphibian and in various mammalian cell lines (XTH2, CHO-K1, HaCaT, MDCK, NIH-3T3) by confocal laser scanning microscopy. After paraformaldehyde fixation GFP became associated with microfilaments in all the cell lines investigated. This interaction was not impaired by detergent treatment (1% Brij 58 for 10 min). In contrast to the F-actin binding of GFP in fixed cells, association of GFP with stress fibres was not detectable in living cells. The actin-binding property of GFP might contribute also to the interaction of fusion proteins with microfilaments. Thus, careful controls are unavoidable in investigating (weak) actin-binding proteins in fixed cells. Because no association of GFP with microfilaments was detectable in living cells, it is recommended to monitor the intracellular distribution of GFP-tagged proteins in vivo.  相似文献   

17.
Selenoprotein P (SEPP1), an extracellular glycoprotein of unknown function, is a unique member of the selenoprotein family that, depending on species, contains 10-17 selenocysteines in its primary structure; in contrast, all other family members contain a single selenocysteine residue. The SEPP1-null (Sepp1(-/-)) male but not the female mice are infertile, but the cellular basis of this male phenotype has not been defined. In this study, we demonstrate that mature spermatozoa of Sepp1(-/-) males display a specific set of flagellar structural defects that develop temporally during spermiogenesis and after testicular maturation in the epididymis. The flagellar defects include a development of a truncated mitochondrial sheath, an extrusion of a specific set of axonemal microtubules and outer dense fibers from the principal piece, and ultimately a hairpin-like bend formation at the midpiece-principal piece junction. The sperm defects found in Sepp1(-/-) males appear to be the same as those observed in wild-type (Sepp1(+/+)) males fed a low selenium diet. Supplementation of dietary selenium levels for Sepp1(-/-) males neither reverses the development of sperm defects nor restores fertility. These data demonstrate that SEPP1 is required for development of functional spermatozoa and indicate that it is an essential component of the selenium delivery pathway for developing germ cells.  相似文献   

18.
Selenoprotein P (SELENOP) is a serum glycoprotein that is required for proper selenium distribution in mammals, particularly in supplying selenium to the brain and testes. As the sole mechanism for providing essential selenium to developing spermatozoa, SELENOP metabolism is central to male fertility in all mammals. In addition, this process is important for proper brain function, especially under conditions of limited dietary selenium. Several specific and nonspecific mechanisms for SELENOP uptake in target tissues have been described, but the utilization of SELENOP as a source of selenium for intracellular selenoprotein production has not been systematically characterized. In this report, we examine the process of SELENOP uptake using a robust selenium uptake assay that measures selenium utilization in cells fed 75Se-SELENOP. Using a series of inhibitors and modulators we have identified specific regulators of the process and found that SELENOP must be in an oxidized state for uptake. This assay also demonstrates that SELENOP uptake is not highly sequence specific as the zebrafish protein is recognized and processed by mammalian cells.  相似文献   

19.
20.
Tissue ischemia remains a common problem in plastic surgery and one for which proangiogenic approaches have been investigated. Given the recent discovery of circulating endothelial stem or progenitor cells that are able to form new blood vessels, the authors sought to determine whether these cells might selectively traffic to regions of tissue ischemia and induce neovascularization. Endothelial progenitor cells were isolated from the peripheral blood of healthy human volunteers and expanded ex vivo for 7 days. Elevation of a cranially based random-pattern skin flap was performed in nude mice, after which they were injected with fluorescent-labeled endothelial progenitor cells (5 x 10(5); n = 15), fluorescent-labeled human microvascular endothelial cells (5 x 10(5); n = 15), or media alone (n = 15). Histologic examination demonstrated that endothelial progenitor cells were recruited to ischemic tissue and first appeared by postoperative day 3. Subsequently, endothelial progenitor cell numbers increased exponentially over time for the remainder of the study [0 cells/mm2 at day 0 (n = 3), 9.6 +/- 0.9 cells/mm2 at day 3 (n = 3), 24.6 +/- 1.5 cells/mm2 at day 7 (n = 3), and 196.3 +/- 9.6 cells/mm2 at day 14 (n = 9)]. At all time points, endothelial progenitor cells localized preferentially to ischemic tissue and healing wound edges, and were not observed in normal, uninjured tissues. Endothelial progenitor cell transplantation led to a statistically significant increase in vascular density in ischemic tissues by postoperative day 14 [28.7 +/- 1.2 in the endothelial progenitor cell group (n = 9) versus 18 +/- 1.1 in the control media group (n = 9) and 17.7 +/- 1.0 in the human microvascular endothelial cell group (n = 9; p < 0.01)]. Endothelial progenitor cell transplantation also showed trends toward increased flap survival [171.2 +/- 18 mm2 in the endothelial progenitor cell group (n = 12) versus 134.2 +/- 10 mm2 in the media group (n = 12) and 145.0 +/- 13 mm2 in the human microvascular endothelial cell group (n = 12)], but this did not reach statistical significance. These findings indicate that local tissue ischemia is a potent stimulus for the recruitment of circulating endothelial progenitor cells. Systemic delivery of endothelial progenitor cells increased neovascularization and suggests that autologous endothelial progenitor cell transplantation may have a role in the salvage of ischemic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号