首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice plants grown in paddy fields preferentially use ammonium as a source of inorganic nitrogen. Glutamine synthetase (GS) catalyses the conversion of ammonium to glutamine. Of the three genes encoding cytosolic GS in rice, OsGS1;1 is critical for normal growth and grain filling. However, the basis of its physiological function that may alter the rate of nitrogen assimilation and carbon metabolism within the context of metabolic networks remains unclear. To address this issue, we carried out quantitative comparative analyses between the metabolite profiles of a rice mutant lacking OsGS1;1 and its background wild type (WT). The mutant plants exhibited severe retardation of shoot growth in the presence of ammonium compared with the WT. Overaccumulation of free ammonium in the leaf sheath and roots of the mutant indicated the importance of OsGS1;1 for ammonium assimilation in both organs. The metabolite profiles of the mutant line revealed: (i) an imbalance in levels of sugars, amino acids and metabolites in the tricarboxylic acid cycle, and (ii) overaccumulation of secondary metabolites, particularly in the roots under a continuous supply of ammonium. Metabolite-to-metabolite correlation analysis revealed the presence of mutant-specific networks between tryptamine and other primary metabolites in the roots. These results demonstrated a crucial function of OsGS1;1 in coordinating the global metabolic network in rice plants grown using ammonium as the nitrogen source.  相似文献   

2.
3.
4.
5.
6.
Cellular localization of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) in vascular bundles of leaf blades of rice (Oryza sativa L.), at the stage at which leaf blades 6 (the lowest position) to 10 were fully expanded, was investigated immunocytologically with an affinity-purified anti-GS1 immunoglobulin G. Strong signals for GS1 protein were detected in companion cells of large vascular bundles when blades 6–8 were tested. Signals for GS1 were also observed in vascular-parenchyma cells of both large and small vascular bundles. The results further support our hypothesis that GS1 is important for the export of leaf nitrogen from senescing leaves. The signals in companion cells were less striking in the younger green leaves and were hardly detected in the non-green portion of the 11th blade. In the non-green blades, strong signals for GS1 protein were detected in sclerenchyma and xylemparenchyma cells. When total GS extracts prepared from the 6th,10th, and the non-green 11th blades were subjected to anion-exchange chromatography, the activity of GS1 was clearly separated from that of chloroplastic GS, indicating that GS1 proteins detected in the vascular tissues were able to synthesize glutamine. The function of GS1 detected in the developing leaves is discussed.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GS1 cytosolic glutamine synthetase - GS2 plastidic glutamine synthetase - IgG immunoglobulin G  相似文献   

7.
8.
The roles of two cytosolic maize glutamine synthetase isoenzymes (GS1), products of the Gln1-3 and Gln1-4 genes, were investigated by examining the impact of knockout mutations on kernel yield. In the gln1-3 and gln1-4 single mutants and the gln1-3 gln1-4 double mutant, GS mRNA expression was impaired, resulting in reduced GS1 protein and activity. The gln1-4 phenotype displayed reduced kernel size and gln1-3 reduced kernel number, with both phenotypes displayed in gln1-3 gln1-4. However, at maturity, shoot biomass production was not modified in either the single mutants or double mutants, suggesting a specific impact on grain production in both mutants. Asn increased in the leaves of the mutants during grain filling, indicating that it probably accumulates to circumvent ammonium buildup resulting from lower GS1 activity. Phloem sap analysis revealed that unlike Gln, Asn is not efficiently transported to developing kernels, apparently causing reduced kernel production. When Gln1-3 was overexpressed constitutively in leaves, kernel number increased by 30%, providing further evidence that GS1-3 plays a major role in kernel yield. Cytoimmunochemistry and in situ hybridization revealed that GS1-3 is present in mesophyll cells, whereas GS1-4 is specifically localized in the bundle sheath cells. The two GS1 isoenzymes play nonredundant roles with respect to their tissue-specific localization.  相似文献   

9.
Tissue localizations of cytosolic glutamine synthetase (GS1; EC 6.3.1.2), chloroplastic GS (GS2), and ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) in rice (Oryza sativa L.) leaf blades were investigated using a tissue-print immunoblot method with specific antibodies. The cross-sections of mature and senescent leaf blades from middle and basal regions were used for tissue printing. The anti-GS1 antibody, raised against a synthetic 17-residue peptide corresponding to the deduced N-terminal amino acid sequence of rice GS1, cross-reacted specifically with native GS1 protein, but not with GS2 after transfer onto a nitrocellulose membrane. Tissue-print immunoblots showed that the GS1 protein was located in large and small vascular bundles in all regions of the leaf blade prepared from either stage of maturity. On the other hand, GS2 and Fd-GOGAT proteins were mainly located in mesophyll cells. The intensity of the developed color on the membrane for GS1 was similar between the two leaf ages, whereas that for GS2 and Fd-GOGAT decreased during senescence. The tissue-specific localization of GS1 suggests that this GS isoform is important in the synthesis of glutamine, which is a major form of nitrogen exported from the senescing leaf in rice plants.  相似文献   

10.
A mutagenesis programme using ethyl methanesulphonate (EMS) was carried out on Lotus japonicus (Regel) Larsen cv. Gifu in order to isolate photorespiratory mutants in this model legume. These mutants were able to grow in a CO2-enriched atmosphere [0.7% (v/v) CO2] but showed stress symptoms when transferred to air. Among them, three mutants displayed low levels of glutamine synthetase (GS; EC 6.3.1.2) activity in leaves. The mutants accumulated ammonium in leaves upon transfer from 0.7% (v/v) CO2 to air. F1 plants of back crosses to wild type were viable in air and F2 populations segregated 3 : 1 (viable in air : air-sensitive) indicative of a single Mendelian recessive trait. Complementation tests showed that the three mutants obtained were allelic. Chromatography on DEAE-Sephacel used to separate the cytosolic and plastidic GS isoenzymes together with immunological data showed that: (1) mutants were specifically affected in the plastidic GS isoform, and (2) in L. japonicus the plastidic GS isoform eluted at lower ionic strength than the cytosolic isoform, contrary to what happens in most plants. The plastidic GS isoform present in roots of wild type L. japonicus was also absent in roots of the mutants, indicating that this plastidic isoform from roots was encoded by the same gene than the GS isoform expressed in leaf tissue. Viability of mutant plants in high-CO2 conditions indicates that plastidic GS is not essentially required for primary ammonium assimilation. Nevertheless, mutant plants did not grow as well as wild type plants in high-CO2 conditions.  相似文献   

11.
Glutamine synthetase (EC 6.3.1.2) is a key enzyme of ammonium assimilation and recycling in plants where it catalyses the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, five GLN1 genes encode GS1 isoforms. GLN1;2 is the most highly expressed in leaves and is over-expressed in roots by ammonium supply and in rosettes by ample nitrate supply compared with limiting nitrate supply. It is shown here that the GLN1;2 promoter is mainly active in the minor veins of leaves and flowers and, to a lower extent, in the parenchyma of mature leaves. Cytoimmunochemistry reveals that the GLN1;2 protein is present in the companion cells. The role of GLN1;2 was determined by examining the physiology of gln1;2 knockout mutants. Mutants displayed lower glutamine synthetase activity, higher ammonium concentration, and reduced rosette biomass compared with the wild type (WT) under ample nitrate supply only. No difference between mutant and WT can be detected under limiting nitrate conditions. Despite total amino acid concentration was increased in the old leaves of mutants at high nitrate, no significant difference in nitrogen remobilization can be detected using (15)N tracing. Growing plants in vitro with ammonium or nitrate as the sole nitrogen source allowed us to confirm that GLN1;2 is induced by ammonium in roots and to observe that gln1;2 mutants displayed, under such conditions, longer root hair and smaller rosette phenotypes in ammonium. Altogether the results suggest that GLN1;2 is essential for nitrogen assimilation under ample nitrate supply and for ammonium detoxification.  相似文献   

12.
13.
Changes in the levels of cytosolic glutamine synthetase (GS1) and chloroplastic glutamine synthetase (GS2) polypeptides and of corresponding mRNAs were determined in leaves of hydroponically grown rice (Oryza sativa) plants during natural senescence. The plants were grown in the greenhouse for 105 days at which time the thirteenth leaf was fully expanded. This was counted as zero time for senescence of the twelfth leaf. The twelfth leaf blade on the main stem was analyzed over a time period of −7 days (98 days after germination) to +42 days (147 days after germination). Total GS activity declined to less than a quarter of its initial level during the senescence for 35 days and this decline was mainly caused by a decrease in the amount of GS2 polypeptide. Immunoblotting analyses showed that contents of other chloroplastic enzymes, such as ribulose-1,5-bisphosphate carboxylase/oxygenase and Fd-glutamate synthase, declined in parallel with GS2. In contrast, the GS1 polypeptide remained constant throughout the senescence period. Translatable mRNA for GS1 increased about fourfold during the senescence for 35 days. During senescence, there was a marked decrease in content of glutamate (to about one-sixth of the zero time value); glutamate is the major form of free amino acid in rice leaves. Glutamine, the major transported amino acid, increased about threefold compared to the early phase of the harvest in the senescing rice leaf blades. These observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.  相似文献   

14.
The role of cytosolic glutamine synthetase in wheat   总被引:15,自引:1,他引:14  
The role of glutamine synthetase (GS; EC 6.3.1.2) was studied in wheat. GS isoforms were separated by HPLC and the two major leaf isoforms (cytosolic GS1 and chloroplastic GS2) were found to change in content and activity throughout plant development. GS2 dominated activity in green, rapidly photosynthesising leaves compared to GS1 which was a minor component. GS2 remained the main isoform in flag leaves at the early stages of grain filling but GS1 activity increased as the leaves aged. During senescence, there was a decrease in total GS activity which resulted largely from the loss of GS2 and thus GS 1 became a greater contributor to total GS activity. The changes in the activities of the GS isoforms were mirrored by the changes in GS proteins measured by western blotting. The changes in GS during plant development reflect major transitions in metabolism from a photosynthetic leaf (high GS2 activity) towards a senescencing leaf (relatively high GS1 activity). It is likely that, during leaf maturation and subsequently senescence, GS1 is central for the efficient reassimilation of ammonium released from catabolic reactions when photosynthesis has declined and remobilisation of nitrogen is occurring. Preliminary analysis of transgenic wheat lines with increased GS1 activity in leaves showed that they develop an enhanced capacity to accumulate nitrogen in the plant, mainly in the grain, and this is accompanied by increases in root and grain dry matter. The possibility that the manipulation of GS may provide a means of enhancing nitrogen use in wheat is discussed.  相似文献   

15.
Two aromatic rice genotypes, Pusa Basmati 1 (PB1) and Kalanamak 3119 (KN3119) having 120 and 30 kg/ha optimum nitrogen requirement respectively, to produce optimal yield, were chosen to understand their differential nitrogen responsiveness. Both the genotypes grown under increasing nitrogen inputs showed differences in seed/panicle, 1,000 seed weight, %nitrogen in the biomass and protein content in the seeds. All these parameters in PB1 were found to be in the increasing order in contrast to KN3119 which showed declined response on increasing nitrogen dose exceeding the normal dose indicating that both the genotypes respond differentially to the nitrogen inputs. Gene expression analysis of members of ammonium transporter gene family in flag leaves during active grain filling stage revealed that all the three members of OsAMT3 family genes (OsAMT1;1-3), only one member of OsAMT2 family i.e., OsAMT2;3 and the high affinity OsAMT1;1 were differentially expressed and were affected by different doses of nitrogen. In both the genotypes, both increase and decline in seed protein contents matched with the expressions levels of OsAMT1;1, OsGS1;1 and OsGS1;2 in the flag leaves during grain filling stage indicating that high nitrogen nutrition in KN3119 probably causes the repression of these genes which might be important during grain filling.  相似文献   

16.
Changes in the activity and subunit composition of cytosolic glutamine synthetase (GS 1; EC 6.3.1.2) and chloroplastic GS (GS 2) were studied in response to an internal (organ ontogeny) and external signal (N source: NO3 or NH4+). Maximum GS 1 activity of all organs examined was measured in the fibre roots, irrespective of the N source. The response of GS 1 to the N source was, however, organ specific. In the fibre roots, NH4+ nutrition resulted in a 2- to 7-fold (based on protein or freshweight, respectively) increase of GS 1 activity compared to NO3-grown plants. In contrast to the roots, GS 1 activity in the leaf blades was 2-fold lower with NH4+ nutrition, whereas only minor changes occurred in the petioles. GS 2 activity was highest in the mature and senescing leaf blade; activity was 2-fold higher with NH4+ than with NO3 nutrition. Not only activity, but also subunit composition of GS 1 changed during organ ontogeny as well as in response to the N source. In contrast to GS 1, only minor changes were evident in GS 2 subunit composition, despite significant changes in GS 2 activity. Up to 5 different GS 1 subunits of ≈41–43 kDa were separated; they were identical in all organs examined. GS 2 was composed of 4 different subunits of ≈48 kDa.  相似文献   

17.
不同环境条件下小麦氮代谢关键酶活性及籽粒品质   总被引:11,自引:0,他引:11  
研究了两种环境条件下3个不同蛋白含量小麦品种的氮代谢关键酶活性及籽粒品质的差异.结果表明,龙口试验点的小麦旗叶硝酸还原酶(NR)、谷胺酰氨合成酶(GS)和籽粒谷胺酰氨合成酶活性均显著高于泰安试验点,3个品种间的酶活性顺序均为:济麦20>优麦3号>PH971942.优质强筋小麦品种的籽粒综合品质性状在龙口试验点的表现优于泰安试验点. 灌浆期环境因素与小麦籽粒品质和酶活性存在显著的相关性,灌浆期间的较高气温、适当干旱和寡照环境有利于提高小麦籽粒品质.龙口试验点的中、强筋小麦品种和泰安试验点的中筋小麦品种蛋白质含量与旗叶NR和GS活性均达显著正相关.小麦品种用途不同,对环境条件的要求不同,适宜的环境条件提高了氮代谢关键酶的活性,利于改善小麦品质.  相似文献   

18.
PII protein in bacteria is a sensor for 2-oxoglutarate and a transmitter for glutamine signaling. We identified an OsGlnB gene that encoded a bacterial PII-like protein in rice. Yeast two-hybrid analysis showed that an OsGlnB gene product interacted with N-acetylglutamate kinase 1 (OsNAGK1) and PII-like protein (OsGlnB) itself in rice. In cyanobacteria, NAGK is a key enzyme in arginine biosynthesis. Transient expression of OsGlnB cDNA or OsNAGK1 cDNA fused with sGFP in rice leaf blades strongly suggested that the PII-like protein as well as OsNAGK1 protein is located in chloroplasts. Both OsGlnB and OsNAGK1 genes were expressed in roots, leaf blades, leaf sheaths and spikelets of rice, and these two genes were coordinately expressed in leaf blades during the life span. Thus, PII-like protein in rice plants is potentially able to interact with OsNAGK1 protein in vivo. This finding will provide a clue to the precise physiological function of PII-like protein in rice.  相似文献   

19.
Raab TK  Terry N 《Plant physiology》1995,107(2):575-585
Sugar beets (Beta vulgaris L. cv F58-554H1) were grown hydroponically in a 16-h light, 8-h dark period (photosynthetic photon flux density of 0.5 mmol m-2 s-1) for 4 weeks from sowing in half-strength Hoagland nutrient solution containing 7.5 mM nitrate. Half of the plants were then transferred to 7.5 mM ammonium N; the rest remained in solution with 7.5 mM nitrate N. Upon transfer from nitrate to ammonium, the total N concentration decreased sharply in the fibrous roots and petiole/midribs and increased substantially in the leaf blades. This was because of the decreased nitrate concentrations in fibrous roots and petioles and a concomitant increase in amino acid/amide-N and protein N in leaf blades. Sugar beets acclimated to ammonium partly by a 2.5-fold increase in glutamine synthase activity in fibrous roots and a 1.7-fold increase in leaf blades. Rapid ammonium assimilation into glutamine consumed carbon skeletons, leading to a depletion of foliar starch, sucrose, and maltose. Ammonium treatment stimulated activities of some glycolytic/Krebs cycle enzymes, e.g. pyruvate dehydrogenase. Nitrate-fed leaf blades contained substantially larger concentrations of osmolytes (i.e. nitrate, cations, and sucrose), which may have contributed to the faster rates of leaf expansion in nitrate-fed compared to ammonium-fed plants.  相似文献   

20.
Reproductive stages of 5 japonica, 9 indica, and 2 javanica cultivars of rice ( Oryza sativa L.) were provided to compare the contents of protein for cytosolic glutamine synthetase (GS1; EC 6.3.1.2) in the lowest position of the attached leaf blade (position 6 from the primary leaf) and those for NADH-glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in non-green portion of the expanding 10th leaf blade. Some of the indica cultivars, including Kasalath, contained GS1 protein twice as high as other japonica and javanica cultivars based on total leaf nitrogen. Most of the indica cultivars, on the other hand, contained less NADH-GOGAT protein than japonica and javanica cultivars. Immunostaining proved that GS1 protein was located in vascular tissues of the leaf blades of Kasalath, which was identical to our previous results with a japonica cultivar [Sakurai et al. (1996) Planta 200: 306–311]. Although relative contents of GS1 protein in the leaf blade of Kasalath increased as a function of leaf age, GS1 activity remained relatively constant. In addition, Kasalath showed lower activity than other japonica and javanica cultivars, especially during leaf expansion. GS1 activity, based on GS1 protein amount, changed during the life span of the leaf blade and we thus assume that GS1 activity was modulated post-translationally in rice leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号