共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins of unusual sequence composition from the malarial parasite Plasmodium falciparum 总被引:1,自引:0,他引:1
R G Ridley 《Biochemical Society transactions》1991,19(2):525-528
2.
When present as a trophozoite in human erythrocytes, the malarial parasite Plasmodium falciparum exhibits an intense glutathione metabolism. Glutathione plays a role not only in antioxidative defense and in maintaining the reducing environment of the cytosol. Many of the known glutathione-dependent processes are directly related to the specific lifestyle of the parasite. Reduced glutathione (GSH) supports rapid cell growth by providing electrons for deoxyribonucleotide synthesis and it takes part in detoxifying heme, a product of hemoglobin digestion. Free radicals generated in the parasite can be scavenged in reaction sequences involving the thiyl radical GS* as well as the thiolate GS-. As a substrate of glutathione S-transferase, glutathione is conjugated to non-degradable compounds including antimalarial drugs. Furthermore, it is the coenzyme of the glyoxalase system which detoxifies methylglyoxal, a byproduct of the intense glycolysis taking place in the trophozoite. Proteins involved in GSH-dependent processes include glutathione reductase, glutaredoxins, glyoxalase I and II, glutathione S-transferases, and thioredoxins. These proteins, as well as the ATP-dependent enzymes of glutathione synthesis, are studied as factors in the pathophysiology of malaria but also as potential drug targets. Methylene blue, an inhibitor of the structurally known P. falciparum glutathione reductase, appears to be a promising antimalarial medication when given in combination with chloroquine. 相似文献
3.
Krungkrai SR Wutipraditkul N Krungkrai J 《Biochemical and biophysical research communications》2008,366(3):821-826
Plasmodium falciparum, the causative agent of human malaria, is totally dependent on de novo pyrimidine biosynthetic pathway. A gene encoding P. falciparum dihydroorotase (pfDHOase) was cloned and expressed in Escherichia coli as monofunctional enzyme. PfDHOase revealed a molecular mass of 42 kDa. In gel filtration chromatography, the major enzyme activity eluted at 40 kDa, indicating that it functions in a monomeric form. This was similarly observed using the native enzyme purified from P. falciparum. Interestingly, kinetic parameters of the enzyme and inhibitory effect by orotate and its 5-substituted derivatives parallel that found in mammalian type I DHOase. Thus, the malarial enzyme shares characteristics of both type I and type II DHOases. This study provides the monofunctional property of the parasite DHOase lending further insights into its differences from the human enzyme which forms part of a multifunctional protein. 相似文献
4.
The open reading frames of two different proteins with homologies to 2-Cys peroxiredoxins have been identified in the P. falciparum genome. Both genes, with a length of 585 and 648 bp, respectively, were amplified from a gametocyte cDNA and overexpressed in Escherichia coli. The gene products (deduced m 21.8 and 24.6 kDa) with an overall identity of 51.8% were found to be active in the glutamine synthetase protector assay. The smaller protein (named Pf-thioredoxin peroxidase 1; PfTPx1) is reduced by P. falciparum thioredoxin (PfTrx) and accepts H(2)O(2), t-butylhydroperoxide, and cumene hydroperoxide as substrates, the respective k(cat) values for the N-terminally His-tagged protein in the presence of 10 microM PfTrx and 200 microM substrate being 67, 56, and 41 min(-1) at 25 degrees C. As described for many peroxiredoxins, PfTPx1 does not follow saturation kinetics. Furthermore, in oxidizing milieu both proteins are converted to another protein species migrating faster in SDS gel electrophoresis. For PfTPx1 also this second species was found to be active, however, with different kinetic properties which might indicate a mechanism of enzyme regulation in vivo. 相似文献
5.
Hogg T Nagarajan K Herzberg S Chen L Shen X Jiang H Wecke M Blohmke C Hilgenfeld R Schmidt CL 《The Journal of biological chemistry》2006,281(35):25425-25437
Malaria is caused by protozoan erythrocytic parasites of the Plasmodium genus, with Plasmodium falciparum being the most dangerous and widespread disease-causing species. Falcipain-2 (FP-2) of P. falciparum is a papain-family (C1A) cysteine protease that plays an important role in the parasite life cycle by degrading erythrocyte proteins, most notably hemoglobin. Inhibition of FP-2 and its paralogues prevents parasite maturation, suggesting these proteins may be valuable targets for the design of novel antimalarial drugs, but lack of structural knowledge has impeded progress toward the rational discovery of potent, selective, and efficacious inhibitors. As a first step toward this goal, we present here the crystal structure of mature FP-2 at 3.1 A resolution, revealing novel structural features of the FP-2 subfamily proteases including a dynamic beta-hairpin hemoglobin binding motif, a flexible N-terminal alpha-helical extension, and a unique active-site cleft. We also demonstrate by biochemical methods that mature FP-2 can proteolytically process its own precursor in trans at neutral to weakly alkaline pH, that the binding of hemoglobin to FP-2 is strictly pH-dependent, and that FP-2 preferentially binds methemoglobin over hemoglobin. Because the specificity and proteolytic activity of FP-2 toward its multiple targets appears to be pH-dependent, we suggest that environmental pH may play an important role in orchestrating FP-2 function over the different life stages of the parasite. Moreover, it appears that selectivity of FP-2 for methemoglobin may represent an evolutionary adaptation to oxidative stress conditions within the host cell. 相似文献
6.
Yanan He Yihong Chen Natalia Oganesyan Biao Ruan David O'Brochta Philip N. Bryan John Orban 《Proteins》2012,80(12):2810-2817
Plasmodium subtilisin 2 (Sub2) is a multidomain protein that plays an important role in malaria infection. Here, we describe the solution NMR structure of a conserved region of the inhibitory prodomain of Sub2 from Plasmodium falciparum, termed prosub2. Despite the absence of any detectable sequence homology, the protozoan prosub2 has structural similarity to bacterial and mammalian subtilisin‐like prodomains. Comparison with the three‐dimensional structures of these other prodomains suggests a likely binding interface with the catalytic domain of Sub2 and provides insights into the locations of primary and secondary processing sites in Plasmodium prodomains. Proteins 2012;. © 2012 Wiley Periodicals, Inc. 相似文献
7.
Annette N. Chiang Juan-Carlos Valderramos Raghavan Balachandran Raj J. Chovatiya Brian P. Mead Corinne Schneider Samantha L. Bell Michael G. Klein Donna M. Huryn Xiaojiang S. Chen Billy W. Day David A. Fidock Peter Wipf Jeffrey L. Brodsky 《Bioorganic & medicinal chemistry》2009,17(4):1527-1533
Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. 相似文献
8.
Farrow RE Green J Katsimitsoulia Z Taylor WR Holder AA Molloy JE 《Seminars in cell & developmental biology》2011,(9):953-960
Plasmodium falciparum is the most virulent causative agent of malaria in man accounting for 80% of all malarial infections and 90% of the one million annual deaths attributed to malaria. P. falciparum is a unicellular, Apicomplexan parasite, that spends part of its lifecycle in the mosquito and part in man and it has evolved a special form of motility that enables it to burrow into animal cells, a process termed “host cell invasion”. The acute, life threatening, phase of malarial infection arises when the merozoite form of the parasite undergoes multiple cycles of red blood cell invasion and rapid proliferation. Here, we discuss the molecular machinery that enables malarial parasites to invade red blood cells and we focus particularly on the ATP-driven acto-myosin motor that powers invasion. 相似文献
9.
D L vander Jagt L A Hunsaker N M Campos J V Scaletti 《Biochimica et biophysica acta》1992,1122(3):256-264
Three hemoglobin-degrading proteinases were partially purified from food vacuoles isolated from trophozoite-stage forms of the malarial parasite Plasmodium falciparum. Two of the proteinases (M1 and M2) were solubilized by repeated sonication. The remaining proteinase (M3) was solubilized by treatment of the particulate fraction with taurocholic acid, suggesting that proteinase M3 is a membrane-bound proteinase whereas proteinases M1 and M2 are weakly associated with parasite membrane. The location of these proteinases suggests that they may participate in the digestion of host cytosolic protein. After partial purification, but not before, proteinases M1, M2 and M3 are highly sensitive to pepstatin, supporting their designation as aspartic proteinases. These aspartic proteinases show broad specificity for protein substrates. Native hemoglobin, acid denatured hemoglobin and oxidatively damaged hemoglobin are comparable substrates. Hemoglobin within the food vacuole was shown to be primarily native hemoglobin. Chemical modification studies indicate that these three aspartic proteinases have similar properties. The peptide maps from degradation of hemoglobin, however, suggest that aspartic proteinases M1, M2 and M3 are distinct proteinases. 相似文献
10.
During its intra-erythrocytic cycle, Plasmodium falciparum synthesizes a protein of apparent Mr 250,000-300,000. Its precise size is dependent on the P. falciparum isolate examined. This protein contains phosphate covalently bound to one or more serine residues and hence is termed PP300. Monoclonal antibody, McAb4-1F, binds to PP300 on immunoblots of protein extracts from all parasite isolates tested, both those exhibiting and those lacking the knob phenotype. Using McAb4-1F, the polypeptide was shown to be physically associated with the plasma membrane in a membrane-isolation procedure. However, in an indirect immunofluorescence assay the McAb appeared to bind to antigen associated with the erythrocyte plasma membrane in parasitized cells. However, it reacted only to fixed, not unfixed, parasitized erythrocytes indicating that the epitope is not normally exposed to extracellular antibodies. Clone 29-2 was isolated by a McAb4-1F immunoscreen of a P. falciparum complementary DNA (cDNA) expression library created in pUC8. Rat anti-clone serum which was raised to the purified protein encoded by the lacZ-29-2 fusion in pUC8 reacted with PP300 in immunoblots of parasite antigen. In Southern-blot analyses of parasite DNA digested with EcoRI, HindIII, or EcoRV, the 29-2 DNA insert hybridized to more than one fragment even though the insert lacked internal sites for these enzymes. In addition, hybridization studies were conducted using two oligodeoxy-nucleotides which were constructed based on the sequence of a cDNA clone which encoded part of a similar high-molecular-weight P. falciparum protein [Coppel et al., Mol. Biochem. Parasitol. 20 (1986) 265-277]. Analysis of these results indicates that the two cDNA sequences are parts of the same gene or a family of related genes. 相似文献
11.
Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology. 相似文献
12.
13.
14.
We have cloned and sequenced the gene encoding the circumsporozoite (CS) protein of Plasmodium reichenowi a Plasmodium falciparum-like malaria parasite of chimpanzees. Comparison of the two CS proteins reveals both similarities and differences in these two evolutionarily related parasites that have adapted to different hosts. The P. reichenowi CS protein has a new repeat sequence, NVNP, in addition to the P. falciparum-like NANP and NVDP repeats. In the immunodominant TH2R and TH3R regions of the CS protein, the amino acid sequences are similar in both parasite proteins. The differences in the two proteins exist in domains around the conserved regions, Region I and Region II, which are otherwise conserved in the CS proteins of P. falciparum analyzed to date. Studies of parasite protein genes of evolutionarily related malaria parasites, together with other immunologic and biologic characteristics, will help better understand the evolution and host parasite relationship of malaria parasites and may provide a tool for identifying protein determinants for malaria vaccine development. 相似文献
15.
Resistance to the antimalarial drug chloroquine has been linked with polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum, yet the mechanism by which this gene confers the reduced drug accumulation phenotype associated with resistance is largely unknown. To investigate the role of pfcrt in mediating chloroquine resistance, we challenged P. falciparum clones differing only in their pfcrt allelic form with the "varying-trans" procedure. In this procedure, movement of labeled substrate across a membrane is measured when unlabeled substrate is present on the trans side of the membrane. If a transporter is mediating the substrate flow, a stimulation of cis-to-trans movement may be observed with increasing concentrations of trans substrate. We present evidence for an association of those pfcrt alleles found in chloroquine-resistant P. falciparum strains with the phenomenon of stimulated chloroquine accumulation under varying-trans conditions. Such an association is not seen with polymorphisms within pfmdr1, which encodes a homologue of the human multidrug resistance efflux pump. Our data are interpreted in terms of a model in which pfcrt is directly or indirectly involved in carrier-mediated chloroquine efflux from resistant cells. 相似文献
16.
Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target 总被引:7,自引:0,他引:7
Glutathione S-transferases (GSTs), which occur abundantly in most organisms, are essentially involved in the intracellular detoxification of numerous substances including chemotherapeutic agents, and thus play a major role in the development of drug resistance. A gene encoding a protein with sequence identity of up to 37% with known GSTs was identified on chromosome 14 of the malarial parasite Plasmodium falciparum. It was amplified using gametocyte cDNA and expressed in Escherichia coli as a hexahistidyl-tagged protein of 26 kDa subunit size. The homodimeric enzyme (PfGST) was found to catalyse the glutathione (GSH)-dependent modification of 1-chloro-2,4-dinitrobenzene and other typical GST substrates such as o-nitrophenyl acetate, ethacrynic acid, and cumene hydroperoxide. The Km value for GSH was 164+/-20 microM. PfGST was inhibited by cibacron blue (Ki=0.5 microM), S-hexylglutathione (Ki=35 microM), and protoporphyrin IX (Ki=10 microM). Hemin, a most toxic compound for parasitised erythrocytes, was found to be an uncompetitive ligand of PfGST with a Ki of 6.5 microM. Based on the activity of PfGST in extracts of P. falciparum, the enzyme represents 1 to 10% of cellular protein and might therefore serve as an efficient in vivo buffer for parasitotoxic hemin. Destabilising ligands of GST are thus expected to be synergistic with the antimalarial drug chloroquine, which itself was found to be a very weak inhibitor of PfGST (IC50>200 microM). X-ray quality crystals of PfGST (250x200x50 microm) will serve as starting point for structure-based drug design. 相似文献
17.
18.
Recombinant Plasmodium falciparum glyoxalase I (PfGlx I) was characterized as monomeric Zn(2+)-containing enzyme of 44 kDa. The K(M) value of the methylglyoxal-glutathione adduct is 77+/-15 microM, the k(cat) value being 4000 min(-1) at 25 degrees C and pH 7.0. PfGlx I consists of two halves, each of which is homologous to the small 2-domain glyoxalase I of man. Both parts of the pfglx I gene were overexpressed; the C-terminal half of PfGlx I was found to be a stable protein and formed an enzymatically active dimer. These results support the hypothesis of domain-swapping and subunit fusion as mechanisms in glyoxalase I evolution. 相似文献
19.
20.
Cloning, sequence and expression of the lactate dehydrogenase gene from the human malaria parasite, Plasmodium vivax 总被引:1,自引:0,他引:1
Turgut-Balik D Akbulut E Shoemark DK Celik V Moreton KM Sessions RB Holbrook JJ Brady RL 《Biotechnology letters》2004,26(13):1051-1055
Increased drug resistance to anti-malarials highlights the need for the development of new therapeutics for the treatment of malaria. To this end, the lactate dehydrogenase (LDH) gene was cloned and sequenced from genomic DNA of Plasmodium vivax ( PvLDH) Belem strain. The 316 amino acid protein-coding region of the PvLDH gene was inserted into the prokaryotic expression vector pKK223-3 and a 34 kDa protein with LDH activity was expressed in E. coli. Structural differences between human LDHs and PfLDH make the latter an attractive target for inhibitors leading to novel anti-malarial drugs. The sequence similarity between PvLDH and PfLDH (90% residue identity and no insertions or deletions) indicate that the same approach could be applied to Plasmodium vivax, the most common human malaria parasite in the world. 相似文献