首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of prostaglandin (PG) E1, PGE2, the stable prostacyclin analogue Iloprost, and PGF2 alpha on low density lipoprotein (LDL) receptor activity and cholesterol synthesis were investigated in freshly isolated human mononuclear leukocytes. Incubation of cells for up to 45 hr in a lipid-free medium resulted in an increase in the rate of cholesterol synthesis from [14C]acetate and the high affinity accumulation and degradation of 125I-labeled LDL. Addition of PGE1 in increasing concentrations to the incubation medium inhibited cholesterol synthesis and the specific accumulation and degradation of 125I-labeled LDL; at a concentration of 10 microM, the inhibitions were 61%, 70%, and 67%, respectively, after an incubation of 20 hr. The effects of PGE2 and Iloprost were similar. The action of the prostaglandins on LDL receptor activity appeared to be mediated by a decrease in the number of LDL receptors and not by a change in the binding affinity. The prostaglandins yielded sigmoidal log concentration-effect curves. In contrast, PGF2 alpha had no influence on cholesterol synthesis or LDL receptor activity up to a concentration of 10 microM. PGE1, PGE2, and Iloprost, but not PGF2 alpha, led to an increase in the concentration of intracellular cyclic AMP. Dibutyryl cyclic AMP mimicked the effects of the E-prostaglandins and Iloprost on the LDL receptor activity. The results suggest that PGE1, PGE2, and prostacyclin affect LDL receptor activity and cholesterol synthesis and, therefore, may play a role in the regulation of cholesterol homeostasis and in the development of atherosclerosis.  相似文献   

2.
The effect of sodium n-butyrate on prostaglandin synthesis in cultured cells was examined. Exposure of BC-90 cells, a clone of an epithelial rat liver cell line, to 1 mM sodium n-butyrate for 40 h induced prostacyclin production. Prostacyclin synthesis was proved by demonstrating: (1) production of labeled 6-ketoprostaglandin F1 alpha by treating [14C]arachidonic acid pre-labeled cells with calcium ionophore A23187, (2) production of unstable substance that inhibited adenosine diphosphate-induced platelet aggregation, and (3) conversion of [14C]arachidonic acid to 6-ketoprostaglandin F1 alpha in homogenates of n-butyrate-treated cells. Untreated control cells showed negligible prostaglandin synthesis. Untreated cell homogenates did not convert [14C]arachidonic acid to any prostaglandins, but they converted [14C]prostaglandin H2 to prostacyclin. Induction of prostacyclin production by n-butyrate was also demonstrated with cells that had been treated with acetylsalicylic acid before n-butyrate treatment in acetylsalicylic acid-free medium. Incorporation of [3H]acetylsalicylic acid by sodium n-butyrate-treated cells increased in accordance with treatment time, while that of untreated cells did not change during culture. There was no difference in the phospholipase A2 activities of n-butyrate-treated and -untreated cells. From these findings, the possibility that n-butyrate induced prostacyclin in BC-90 cells through induction of fatty acid cyclooxygenase activity is discussed.  相似文献   

3.
High-performance liquid chromatography and radioimmunoassay were used to identify the prostaglandins synthesized by mouse embryo palate mesenchyme cells. Serum stimulated the release of several different metabolites of arachidonic acid including 6-ketoprostaglandin F1 alpha (the stable product of prostacyclin, prostaglandin I2), prostaglandin E2 and prostaglandin F2 alpha. Compared to control cells, the serum-stimulated cells produce elevated levels of prostaglandin E2 (36-fold), 6-ketoprostaglandin F1 alpha (15-fold) and prostaglandin F2 alpha (7-fold). The acetylenic analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid prevented this accelerated synthesis.  相似文献   

4.
Prostacyclin and prostaglandin synthesis in isolated brain capillaries   总被引:3,自引:0,他引:3  
The synthesis of prostacyclin and prostaglandins was examined in isolated blood-free brain capillaries of guinea-pigs and rats using 1-14C-arachidonic acid as a precursor. The main prostaglandins synthesized by guinea-pig microvessels were prostaglandin D2 and prostaglandin E2. Substantially less prostaglandin F2 alpha or the prostacyclin stable metabolite, 6-oxo-prostaglandin F1 alpha was synthesized. Rat capillary prostaglandin distribution differed substantially from that of the guinea-pigs although the principle prostaglandin was also PGD2. Total prostaglandin conversion was greater in guinea-pig capillaries than in the rat. Norepinephrine stimulated the prostaglandin forming capacity of blood free cerebral microvasculature of guinea-pigs. Prostacyclin and prostaglandins could be involved in the activity dependent regulation of regional cerebral blood flow and permeability.  相似文献   

5.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

6.
Microsomal prostaglandin synthase (EC 1.14.99.1) from rabbit kidney medulla was assayed with [5,6,8,9,11,12,14,15-3H]-and [1-14C]-arachidonic acid as the substrate. The ratios of prostaglandin F2 alpha to prostaglandin E2 and to prostaglandin D2 were determined by both 3H and 14C labelling. When 3H was used as a label the ratios were much higher than with 14C labelling indicating that the removal of hydrogen at C-9 or C-11 was the rate-limiting step in the biosynthesis of prostaglandin E2 or prostaglandin D2. This finding shows that the octatritiated arachidonic acid is not the appropriate substrate marker for studying the regulation of the synthesis of different prostaglandins by various agents. When the enzyme assay was carried out in the presence of SnCL2, which was capable of accumulating exclusively prostaglandin F2alpha at the expenses of prostaglandin E2 and prostaglandin D2, the addition of L-adrenaline to the microsomal fraction either alone or with reduced glutathione equally stimulated the formation of prostaglandin F2alpha, whereas the addition of reduced glutathione to the microsomal fraction either alone or with L-adrenaline produced no additional effect. These results suggest that endoperoxide is formed as the common intermediate for the biosynthesis of three different prostaglandins in rabbit kidney medulla, and that L-adrenaline stimulates the synthesis of endoperoxide, whereas reduced glutathione facilitates the formation of prostaglandins from endoperoxide.  相似文献   

7.
Radioimmunoassays of platelet prostaglandins E1 and F1 alpha in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF1 alpha are present at higher concentrations than prostaglandins E2 and F2 alpha. Gas chromatography--mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1--14C] acetate into prostaglandins E1 and F1 alpha compared to that into prostaglandins E2 and F2 alpha.  相似文献   

8.
Prostaglandin synthesis in human diploid fibroblasts was studied by incubating [14C]-arachidonic acid with cell homogenates. The majority of prostaglandins produced in young cells was 6-ketoprostaglandin F1 alpha. The 6-ketoprostaglandin F1 alpha-producing activity of cultures declined with in vitro aging, and was almost undetectable at the senescent stage, while total production of thromboxane B2, prostaglandin F2 alpha and prostaglandin E2-like metabolites increased with in vitro aging.  相似文献   

9.
When human blood leukocytes are incubated with [2-14C]acetate only about 32% of the nonsaponifiable lipid radioactivity is recovered in digitonin-precipitable material. Using thin-layer chromatography and gas-liquid radiochromatography, we have determined that most of the label from [2-14C]acetate in the nonsaponifiable fractions is in lanosterol, squalene and an unidentified sterol. Only 11% of the acetate radioactivity is contained in cholesterol. This distribution does not change when cholesterol synthesis is depressed by the addition of lipoproteins to the medium. These findings are in marked contrast to studies with liver, where most of the nonsaponifiable radioactivity derived from acetate is recovered in digitonin-precipitable sterols. Furthermore, they suggest that rate-limiting steps beyond the 3-hydroxy-3-methylglutaryl coenzyme A reductase reaction exist in the sterol synthesis pathway of human leukocytes.  相似文献   

10.
Ergosterol was the only sterol detected in Herpetomonas samuelpessoai grown in a defined, lipid-free medium. When cultivated in a complex medium, this flagellate was found to contain 6 additional sterols. As measured by incorporation of L-[Me-14C]methionine, in the absence of acetate, the sterol synthesis was greater at 28 C than at 37 C; in the presence of acetate, however, this synthesis was greater at 37 C. When [2-14C]acetate was used as the sterol precursor, the synthesis level at 37 C exceeded that at 28 C.  相似文献   

11.
This study was undertaken to develop techniques for measuring absolute rates of sterol synthesis in extrahepatic tissues in vitro and to estimate the magnitude of the errors inherent in the use of various 14C-labeled substrates for such measurements. Initial studies showed that significant errors were introduced when rates of synthesis were estimated using [3H]water since about 20 nmol of water were bound to each mg of tissue cholesterol isolated as the digitonide. This source of error could be eliminated by subtracting apparent incorporation rates obtained at 0 degrees C from those obtained at 37 degrees C or by regenerating and drying the free sterol. In a second set of experiments, the H/C incorporation ratio in cholesterol was determined in the liver by measuring the absolute rates of hydrogen and acetyl CoA flux into sterols. The ratio of 0.69 +/- 0.03 was found to be independent of the rate of hepatic cholesterol synthesis, the rate of hepatic acetyl CoA generation, or the source of the acetyl CoA. In a third set of studies, rates of incorporation of [3H]water or 14C-labeled acetate, octanoate, and glucose into digitonin-precipitable sterols were simultaneously measured in nine different extrahepatic tissues. Assuming that the H/C ratio measured in the liver also applied to these tissues, the [3H]water incorporation rates were multipled by the reciprocal of the H/C ratio to give the absolute rates of sterol synthesis in each tissue. When these were compared to the incorporation rates determined with the 14C-labeled substrates the magnitude of the errors in the rates of sterol synthesis obtained with these substrates in each tissue could be assessed. Only [14C]octanoate gave synthesis rates approaching 100% of those obtained with [3H]water and this occurred only in the intestine and kidney; in the other extrahepatic tissues this substrate gave rates of 6--66+ of the absolute rates. Rates of [14C]acetate incorporation in sterols varied from 4 to 62% of the [3H]water incorporation rates while those obtained with [14C]glucose were only 2--88% of the true rates. These studies document the large and highly variable errors inherent in estimating rates of sterol synthesis in extrahepatic tissues using 14C-labeled substrates under in vitro conditions.  相似文献   

12.
Changes in sterol metabolism in the skin of chick embryo during its development were studied with embryonal chick skin and with the cultured skin tissues. Changes in sterol metabolism of the skin of chick embryo began to appear at day 17, as observed by the accumulation of dihydrolanosterol, and the ratio of dihydrolanostrol:cholesterol increased thereafter until hatching. A similar change in sterol metabolism was also observed with the cultured skin tissue of chick embryo, although the stages of development seem to have been delayed by 3 days. The active sterol metabolism of the cultured skin tissue was also confirmed by studies of incorporation of [2-14C]acetate into sterols. 20,25-Diazacholesterol almost completely inhibited the incorporation of [2-14C]acetate into C27 sterols, whereas a chemical carcinogen, 4-hydroxyaminoquinoline 1-oxide, inhibited the incorporation of [2-14C]acetate into lathosterol but not that into cholesterol.  相似文献   

13.
Prostaglandin E2 and prostacyclin (prostaglandin I2) produce hyperalgesia in animals and humans. Because there is evidence that prostaglandins contribute to pain maintained by sympathetic nervous system activity, we evaluated whether sympathetic postganglionic neurons synthesize these hyperalgesic prostaglandins, and whether production of prostaglandins by these neurons can contribute to sensitization of primary afferent nociceptors. Intradermal injection of arachidonic acid but not linoleic acid, in the rat hindpaw, produces a decrease in mechanical nociceptive threshold. This hyperalgesic effect is prevented by indomethacin, an inhibitor of prostaglandin synthesis or by prior surgical removal of the lumbar sympathetic chain. To test the hypothesis that sympathetic postganglionic neurons are the source of prostaglandins, we measured production of prostaglandin E2 and 6-keto-prostaglandin F1 alpha (the stable metabolite of prostacyclin) by homogenates of adult rat sympathetic postganglionic neurons from superior cervical ganglia. These homogenates produced significant amounts of prostaglandin E2 and 6-keto-prostaglandin F1 alpha, and most of this production is eliminated by neonatal administration of 6-hydroxydopamine which selectively destroys sympathetic postganglionic neurons. These results demonstrate that sympathetic postganglionic neurons produce prostaglandins, and supports further the hypothesis that the release of prostaglandins from sympathetic postganglionic neurons contributes to the hyperalgesia associated with sympathetically maintained pain.  相似文献   

14.
In order to clarify the effect of products of photochemical conversion of sterols on cholesterol biosynthesis, rat skin samples were incubated with 2-(14)C-acetate in the presence of the antirachitic agent Dk and 7beta-hydroxycholesterol. The synthesis of sterols from acetate was activated in the presence of Dk. A correlation between the activation of sterol synthesis and the concentration of the antirachitic agent was found. An addition of 7beta-hydroxycholesterol to the incubation medium inhibited acetate incorporation into the sterols. The level of synthesis inhibition increased with an elevation of the 7beta-hydroxysterol concentration in the incubation medium. This indicates that both products of sterol photoconversion can be involved in the control of cholesterol biosynthesis.  相似文献   

15.
The capacity of cultured mesothelial cells to produce prostaglandins from both exogenous an endogenous arachidonic acid has been investigated. Incubations with labelled [1-14C]arachidonic acid and [1-14C]prostaglandin endoperoxide H2 indicated the formation of prostacyclin and prostaglandin E2. Evaluation of the transformation of endogenously released arachidonic acid, however, could only confirm the production of prostacyclin.  相似文献   

16.
Hydrocortisone in physiologic concentrations resulted in a reduction in sterol synthesis by cultured normal human skin fibroblasts. These changes were observed when [14C]acetate, [14C]octanoic acid and 3H2O were used as precursors. However, the incorporation of [3H]mevalonic acid lactone into digitonin-precipitable sterols was not affected by hydrocortisone, suggesting that hydrocortisone inhibits sterol synthesis at a site prior to the formation of mevalonic acid. In contrast, the activity of hydroxymethylglutaryl-CoA reductase was stimulated several-fold by the hormone. Thus, the inhibitory effect of hydrocortisone on the cholesterol synthetic pathway may be on hydroxymethylglutaryl-CoA synthase.  相似文献   

17.
Minced rabbit pericardium actively converts [1-14C]arachidonic acid into the known prostaglandins (6-[1-14C]ketoprostaglandin F1 alpha, [1-14C]prostaglandin E2 and [1-14C]prostaglandin F2 alpha) and into several unidentified metabolites. The major metabolite was separated by C18 reverse-phase high-pressure liquid chromatography (HPLC) and identified by gas chromatography-mass spectrometry (GC-MS) to be 6,15-[1-14C]diketo-13,14-dihydroprostaglandin F1 alpha. The other nonpolar metabolites were 15-[1-14C]hydroxy-5,8,11,13-eicosa-tetraenoic acid (15-HETE), 11-[1-14C]hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE) and 12-[1-14C]hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). Arachidonic acid metabolites actively produced by the pericardium could influence the tone of surface blood vessels on the myocardium.  相似文献   

18.
Prostanoid synthesis in peripheral nerve   总被引:2,自引:0,他引:2  
The transformation of [1-14C]arachidonic acid into radiolabeled prostanoids was studied with homogenates and desheathed sciatic nerves of rats and frogs. All of the preparations studied were shown to synthesize prostaglandins; the specific prostanoids made were characterized by their migration on thin-layer chromatograms in three separate solvent systems. Both desheathed rat nerve and homogenates synthesize prostaglandin E2, prostaglandin F2 alpha, prostaglandin D2, 6-ketoprostaglandin F1 alpha and thromboxane B2. With preparations from frog nerve, prostaglandin E2 was the major prostanoid product formed. Several conditions were able to modulate the production of prostaglandin E2 with desheathed frog nerve. Electrical stimulation at high frequency (100 Hz) for 30 min increased the formation of labeled prostaglandin E2. Inclusion of glutathione also affected prostaglandin E2 formation. A lower concentration (0.1 mM) stimulated prostaglandin synthesis, while 1 mM glutathione was partially inhibitory. In both the rat and frog system, prostanoid synthesis was suppressed by indomethacin and aspirin.  相似文献   

19.
3H-Labeled prostaglandins D2 and F2 alpha rapidly degraded to more-polar metabolites in primary cultured rat hepatocytes. The metabolites of prostaglandins D2 and F2 alpha accumulated in the culture medium. The metabolites extracted by ethyl acetate at pH 3 were purified by silicic acid column and thin-layer chromatography of silica gel, and were analysed by gas chromatography-mass spectrometry. The major metabolites from prostaglandin D2 were identified as dinor-prostaglandin D1 (7 alpha,13-dihydroxy-9-ketodinorprost-11-enoic acid) and tetranor-prostaglandin D1 (5 alpha,11- dihydroxy-7-ketotetranorprost-9-enoic acid). Those from prostaglandin F2 alpha were identified as dinor-prostaglandin F1 alpha (7 alpha,9 alpha,13-trihydroxydinorprost-11-enoic acid), tetranor-prostaglandin F1 alpha (5 alpha,7 alpha,11-trihydroxytetranorprost-9-enoic acid) and 9 alpha,11 alpha,15-trihydroxyprost-13-ene-1,20-dioic acid. These data indicate that prostaglandins D2 and F2 alpha mainly degraded by beta-oxidation, which is the same process as reported earlier for prostaglandins E1 and E2, and that prostaglandin F2 alpha was also subjected to omega-oxidation.  相似文献   

20.
Isotope-labelled arachidonic acid has been used to study in vitro formation of prostaglandins and other products in mammalian tissue. Quantitative conclusions about cyclooxygenase activity have been drawn from such studies. However, arachidonic acid is present in all tissues, free and esterified, and therefore it can be expected that endogenous arachidonate would interfere with transformation of the radioactive exogenous substrate. (1-14C)-labelled arachidonate was, therefore, incubated with homogenates of various human tissues (amnion, chrorion, placenta and myometrium), and the two molecular forms, 12C and 14C, of arachidonic acid as well as of prostaglandin E2 and prostaglandin F2 alpha were quantitated, before and after 30 min of incubation, using gas chromatography-mass spectrometry with multiple ion detection. The results demonstrate a substantial release of arachidonic acid into the medium during incubation. There was no correlation between either the initial concentration of [12C]arachidonic acid and initial concentration of [12C]prostaglandin E2 or the percent increase of those compounds during incubation. The net formation of [12C]prostaglandin E2 and [14C]prostaglandin E2 from endogenous and exogenous precursor, respectively, were also very different. The study shows that by simply incubating (1-14C)-labelled arachidonic acid in tissue homogenates and measuring the amount of radioactivity transformed into various prostaglandins only qualitative conclusions can be drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号